The GC-MS Analysis of Elaeagnus Angustifolia L. Flowers Essential Oil

LAURA BUCUR1*, GABRIELA STANCIU2, VIORICA ISTUDOR3
1Faculty of Dental Medicine and Pharmacy, “Ovidius” University, 7 Ilarie Voronca Str., Constanta, Romania
2Faculty of Chemistry, “Ovidius” University, 124 Mamaia Blvd, Constanta, Romania
3Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956, Bucharest, Romania

The quantity of essential oil obtained from the flowers of Elaeagnus angustifolia L. from the seaside area of Constanta, is of 0.05%. Two compounds, limonene and anethole in quantities of 1.068% (m/v) and 0.1855% (m/v) respectively were identified and determined quantitatively, by using reference substances through the GC-MS analysis of this species. With the help provided by our database, using the defragmentation process, other six constituents were identified: ethyl cinnamate, 2-phenyl-ethyl benzoate, 2-phenyl-ethyl isovalerate, nerolidole, squalene and acetophenone. The antiseptic and anti-inflammatory properties of these constituents are well-known due to the literature of specialty, which would justify the external use of the essential oil in the treatment of dermatological diseases.

Key words: Elaeagnus angustifolia L., GC-MS analysis, flowers essential oil

The essential oil obtained from the flowers of Elaeagnus angustifolia L. is relatively less studied. A few Russian researchers have established a quantity of 0.1% volatile oil in the flowers of this species. The GC-MS analysis made evident 85 compounds; 47 of them were identified, representing 96.5% from the whole number of compounds. The main component is trans-ethylcinnamate, which represents 78.88% [1].

Starting from this study, our aim is to identify and to establish the content of essential oil in the flowers of Elaeagnus angustifolia L. from the seaside area of Constanta. Using the GC-MS analysis we will study the chemical compounds, on the basis of reference substances and the spectrum storage device.

Materials and methods
The flowers of Elaeagnus angustifolia L. represent the vegetal material harvested from Mamaia village area, Constanta county, in June, 2005.

To obtain the vegetal product, the shrub was shaken and the flowers were collected on tarpaulin; the impurities (leaves, branches, sand grains or insects) were removed and the flowers were dried at the temperature of the room, on special shelves.

The purity of the product was determined by monitoring the impurities in the same plant [2] and the impurities which did not belong to the producing plant [3].

To express the content in the essential oil of the dry product, we determined the humidity according to the Romanian Pharmacopoeia Xth edition [3, 4]. We used 100 g vegetal product and 750 mL water, with 6 h refluxing time. We determined the quantity of volatile oil on the graded tube of apparatus, by catching the essential oil in 1mL of xylene.

We performed the GC-MS analysis with gas chromatograph joined with mass spectrum (GC-MS Agilent 6890NMS5973N).

Analysis conditions: Column HP-5MS 0.25mm x 30m . 0.25um; carrier gas He. 1mL/min (constant flux); speed 36cm/sec; oven 40°C (0.40min), 12°C/s, 300°C (10min).

We identify the compounds in the essential oil on the basis of the reference substances (r.s.) and of the data base device. We used 9 reference substances of compounds frequently met in the essential oils: α and β-pinene, limonene, linalool, linalyl acetate, anisic aldehyde, cinnamic aldehyde, anethole, eugenol) (fig.1). The retention times of these compounds used as reference substances are given in table 1.

Results and discussion
The flowers of Elaeagnus angustifolia L. were sorted and the impurities on the same plant (leaves, branches) and the foreign impurities (sand grains, insects) were removed, so that the vegetal product was 99.9% pure.

The humidity varies between 10.22% and 10.52%, which gives good conservation to the product.

The residue we obtained from the evaporation of the etheric extract has got a slightly aromatic smell, which confirms the presence of the essential oil.

The essential oil obtained in xylene in Neo-Clevenger apparatus was in a very small quantity (0.05%) and had got a yellowish colour.

The sample of the essential oil in xylene which was analysed through the GC-Ms method made evident the presence of 42 chemical compounds, according to the chromatogram given in figure 2.

As a result of the qualitative analysis we identified 8 chemical constituents: 2 of them were determined with the help of the reference substances (limonene and

* email: adrianabucur@yahoo.com

REV. CHIM. (București) 58 11 2007

1027
Table 1

<table>
<thead>
<tr>
<th>Reference substances</th>
<th>Retention time (min.)</th>
<th>Reference substances</th>
<th>Retention time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-pinene</td>
<td>6.98</td>
<td>anisic aldehyde</td>
<td>12.10</td>
</tr>
<tr>
<td>β-pinene</td>
<td>7.73</td>
<td>cinnamic aldehyde</td>
<td>12.36</td>
</tr>
<tr>
<td>limonene</td>
<td>8.56</td>
<td>anethole</td>
<td>12.48</td>
</tr>
<tr>
<td>linalool</td>
<td>9.70</td>
<td>eugenol</td>
<td>13.50</td>
</tr>
<tr>
<td>linalyl acetate</td>
<td>12.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. GC-MS chromatogram of the flowers essential oil in the Elaeagnus angustifolia L. flowers
Anethole), 6 constituents were identified on the basis of the spectrum storage (ethyl cinnamate, 2-phenyl-ethyl benzoate, 2-phenyl-ethyl isovalerate, squalene, nerolidole and acetophenone). Data are given in table 2.

We analysed the quantity of the identified compounds using the reference substances and found 1.068% (m/v) limonene and 0.185% (m/v) anethole in the essential oil. The structure of this compounds is showed in figure 3.

Fig. 3. The structure of compounds quantitatively determined

Limonene and squalene are hydrocarbons (monoterpeneic and triterpenic respectively) with anti-inflammatory and antiseptic properties [5].

Limonene can provide protection against other constituents of the essential oil, such as aldehydes, which can be dermo-caustic [5].

Among the oxygenated derivatives, we identified nerolidole (sesquiterpene alcohol) and anethole (phenol methyl-ether) with antiseptic properties [5].

The esters we identified (ethyl cinnamate, 2-phenyl-ethyl benzoate, 2-phenyl-ethyl isovalerate) are derivatives of cinnamic and benzoic acids and can be found in balms with healing properties; they could justify the use of the essential oil in the treatment of skin diseases and wounds.

Acetophenone is probably a compound of degradation and xylene is the solvent used of catching the essential oil on the graded tube of Neo-Clevenger apparatus.

Conclusions

The essential oil in the flowers of Elaeagnus angustifolia harvested from the seaside area of Constanta, although in very small quantities (0.05%), contains 42 constituents, out of which we identified 8: limonene, anethole, ethyl cinnamate, 2-phenyl-ethyl benzoate, 2-phenyl-ethyl isovalerate, squalene, nerolidole and acetophenone. The quantities of limonen 1.068% (m/v) and anethole 0.184% (m/v) were determined.

The anti-inflammatory and antiseptic properties of these chemical compounds, already known in the literature of specialty, could justify the use of the essential oil in the treatment of dermatological diseases and wounds.

References

1. BEKKER, N.P., GLUSHENKOVA, A.I, Chemistry of Natural Compounds, 37, no. 2, 2001, p. 110

Manuscript received: 12.12.2006