ABOUT INDEXING BOARD ARCHIVES AUTHOR GUIDELINES SUBMIT PAPER AUTHOR'S PAGE NEWS, EVENTS CONTACT
REVISTA DE CHIMIE
Cite as: Rev. Chim.
https://doi.org/10.37358/Rev.Chim.1949

OSIM Nr. R102355
ISSN Online 2668-8212
ISSN Print: 1582-9049
ISSN-L: 1582-9049

REVISTA DE CHIMIE Latest Issue

LATEST ISSUE >>>

   Volume 75, 2024
   Volume 74, 2023
   Volume 73, 2022
   Volume 72, 2021
   Volume 71, 2020
   Volume 70, 2019
   Volume 69, 2018
   Volume 68, 2017
   Volume 67, 2016
   Volume 66, 2015
   Volume 65, 2014
   Volume 64, 2013
   Volume 63, 2012
   Volume 62, 2011
   Volume 61, 2010
   Volume 60, 2009
   Volume 59, 2008
   Volume 58, 2007
 
<<<< back

Revista de Chimie (Rev. Chim.), Year 2013, Volume 64, Issue 1,





MARIA TEODORESCU, CRISTINA HLEVCA, CRISTIANA COSMA, MIHAI STEFANESCU, COSTEL BUMBAC, IOANA IONESCU
How Feasible is Packing Oxidants for Their Use in Treatment
of Contaminated Sites

Abstract:

Protection of different active ingredients is recognized as quite an old practice (in 1931 gelatine microspheres were obtained by coacervation process) and it quickly developed, with applications in pharmaceutical, textile and food industries, and lately for products applied in agriculture. Coating or encapsulating different chemicals implies placing an external “shell”, with protective role, on a core of active ingredient. The final product is a micro-particle, under the form of individual core-shell micro-capsule or a matrix, with more active particulates embodied in. Many physical and chemical techniques have been used for packing ingredients, which were, in most of the cases, chemical substances amenable to be consumed / self-depleted before being active for a specific role. For application in environmental technologies a major challenge is raised by the high chemical reactivity of reagents, especially oxidants, often used for the synthesis or chemical transformation of the potential shell materials. Still, some oxidants were reported to have been packed (Sodium Persulfate or Percarbonate, Potassium Permanganate, too), and the final products were particles in the range of hundreds ìm - cm, which released the oxidant in interval of hours - days. Obtaining microcapsules in the range of micrometric size ([ 100 ìm), with slow regent release is an additional challenge. More preparation methods were experimentally developed (e.g. in-situ polymerization, coacervation or double layer coating) for Potassium Permanganate coating. Better results are obtained when using physical methods, although the economical feasibility is questionable even when using the most cost-efficient methods. Key words: packing oxidants, Potassium Permanganate, in-situ polymerization, coacervation, slow release

Issue: 2013, Volume 64, Issue 1
Pages:
download pdf   Download Pdf Article
Creative Commons License
This article is published under the Creative Commons Attribution 4.0 International License
 
<<<< back
 
PUBLISHING SECTION
Author Guidelines
 * Paper Drafting
 * Paper Template
 * Ethical Statement
 * Paper Submission
Ghidul Autorului (ro)
Submit Paper
Author's Page
Publishing Ethics
Peer Review Process
Open Access & Archiving Policy
 Search Authors
 LATEST NEWS
REvista de Chimie NUMAR OMAGIAL PETRU PONI.. detalii
REvista de Chimie Revista de Chimie - 70 de ani de aparitie neintrerupta.. detalii
dictionar English-Romanian Dictionary for Mechanical Engineering
(download pdf)
  News, Events
Crossref Member Badge
 DOI  logo
 Gold Open Access | Source=http://www.plos.org/  | Author=art designer at PLoS
Creative Commons License
 Conferences of Contemporary
 Chemistry
 Biblioteca Chimiei
 Materiale Plastice