Heat Transfer Coefficient for Hydrocracked Oil Flow in Laminar Regime through an Annular Space

SINZIANA RADULESCU, IRENA LOREDANA NEGOITA, ION ONUTU
Petroleum-Gas University of Ploiesti, Faculty of Petroleum Refining and Petrochemistry, 39 Bucuresti Blv., 100680, Ploiesti, Romania

In this paper it is presented a correlation based on experimental data for the prediction of the laminar heat transfer coefficient when cooling hydrocracked oil in the inner annulus of a horizontal triple concentric-tube heat exchanger. The cold fluid is water and the heat exchanger is operated under counter-current flow conditions. The test section used in the experiment was made of copper tubes with inner diameters of 12 mm, 26 mm and 40 mm, and a length of 1193 mm. Heat transfer coefficient values experimentally obtained were further compared with those calculated from the correlations existing in the literature for flowing through annular and circular spaces in laminar flow regime, acceptable deviations being obtained.

Keywords: heat transfer coefficient, laminar annular flow, triple concentric-tube heat exchanger

Cooling and heating of the petroleum products that flow through the annuli of various concentric-tube heat exchangers, such as double tube or the triple concentric-tube heat exchangers, are of great interest for the determination of the heat transfer coefficients.

For the calculation of heat transfer coefficients in annuli, according to several authors [1 - 3] it is recommended to use the correlations established for the circular tube, in which the characteristic length in Reynolds (Re) and Nusselt (Nu) numbers is the equivalent hydraulic or heated diameter. Taking into consideration that, in the concentric heat exchangers a laminar regime (Re < 2300) is often met, especially for high viscosity products, the use of the well-established correlations for circular tubes involves grave errors, especially if the cross section has sharp corners. For the forced convection in the laminar flow inside a circular tube, there can be mentioned the correlations established by Sieder and Tate (cited by Serth [1], Somoghi [2], Mehrabian [3] and Poh-Seng et al. [4]), M. Rubinstein, Miheev (cited by Somoghi [2]) and Hausen (cited by Lienhard et al. [5]). However, for the laminar annular flow it is mentioned especially the correlation developed by Gnielinski (cited by Serth [1] and Koik [6]). Nevertheless, the heat transfer coefficients in the laminar flow regime of the petroleum products through the annuli made of short tubes cannot be properly predicted by using the existing correlations, as they are more suitable for longer tubes and a general flow pattern. For this purpose, a new correlation was developed in this paper in order to design and to control technologically the heat exchangers with concentric tubes. The experimental data obtained when cooling a hydrocracked oil with water in an experimental triple concentric-tube heat exchanger were used to establish the new correlation. Hydrocracked oil was chosen due to its specific characteristics versus the conventional mineral oils (in terms of composition, high viscosity index, low content of sulfur and nitrogen and a special sensitivity to additivation, purity, protection etc.).

Using the same heat exchanger and experimental setup, Radulescu et al. presented the results obtained in the study of water - water heat transfer [7] and proposed a new Nusselt number correlation for the flow through annulus in transition flow regime [8].

Several correlations previously developed in the literature [1 - 11] were applied for the calculation of the heat transfer coefficients in the heat exchanger, in order to find the best predictive correlations. Therefore, the calculated values for the experimental heat transfer coefficients were compared with those obtained by using the existing correlations.

Experimental part

The triple concentric-tube heat exchanger used within the experiments was made up of cooper circular smooth tubes with a thickness of 1 mm and insulated with mineral wool. The dimensions of the heat exchanger were: \(d_1 = 0.012 \text{ m}, d_2 = 0.026 \text{ m}, d_3 = 0.028 \text{ m}, L_2 = 1.193 \text{ m}, d_4 = 0.040 \text{ m} \) and \(L_3 = 0.935 \text{ m} \). The experimental setup was the one presented by Radulescu et al. in [7, 8], namely: the heat exchanger (the test section), a thermostatic bath and measurement instrumentation (flow meters and digital probe thermometers). Oil was heated in the thermostatic bath and then circulated through the inner annulus of the heat exchanger. Cold water was circulated through the inner tube and the outer annulus and it was supplied by the network.

For the section tested, during the experiments there were measured the inlet and outlet temperatures of the water and the outlet temperatures of the oil, for certain established flow rates of the fluids and a determined inlet oil temperature. The inlet temperature of the oil to the test section was adjusted between 60 - 86.4°C, while the water inlet temperature varied between 10.9 - 19.3°C, depending on the climate conditions.

The flow rates of the fluids were established to 90, 100 and 110 l/h for the water stream that flows through the inner tube, to 50, 120, 150 and 180 l/h for the oil and to 50, 100 and 120 l/h for the water stream that flows through the outer annulus.

Table 1 presents eight sets of experimental data resulted from the tests performed.

The calculation of heat transfer coefficients and the establishment of a new Nusselt correlation

Within the experimental measurements, the heat transfer from the oil to the cold water streams takes place in two opposite directions. One direction is for the heat...
exchange between the oil and the water stream that circulates through the inner tube and the other direction is for the heat exchange between the oil and the water stream that circulates through the outer annulus. Figure 1 shows the longitudinal section of the heat exchanger tubes.

\[A_{1,0} = \pi \cdot d_{1,0} \cdot L_1, \quad A_{2,j} = \pi \cdot d_{2,j} \cdot L_2 \] and \(t_w \) is considered as \(t_w = 0.5(t_{w,1} + t_{w,2}) \).

In equation (4) the temperature of the outer surface of the inner tube, \(t_{w,2} \), and the temperature on the inner surface of the intermediate tube, \(t_{w,3} \), can be written as

\[t_{w,2} = t_{w,1} + \frac{Q_{c1}}{2\pi L_1 \lambda_{c0}} \ln \left(\frac{d_{1,0}}{d_j} \right) \] (5)

\[t_{w,3} = t_{w,4} + \frac{Q_{c2}}{2\pi L_2 \lambda_{c0}} \ln \left(\frac{d_{1,0}}{d_j} \right) \] (6)

where the temperature of the inner surface of the inner tube, \(t_{w,1} \), and the temperature on the outer surface of the intermediate tube, \(t_{w,4} \), can be calculated from Newton's law of cooling written for \(\alpha_1 \) and \(\alpha_3 \). In these equations, it was used the thermal conductivity of cooper, \(\lambda_{c0} = 372.16 \text{ W/m}^\circ\text{C} \).

For the experimental data presented in table 1, the flow regimes are transitional in the inner tube and laminar in annuli.

For the calculation of experimental \(\alpha_2 \), there were applied the following correlations:

\[\text{Sieder-Tate: } Nu = 0.027 \cdot Re^{0.8} \cdot Pr^{1/3} \left(\frac{\mu}{\mu_p} \right)^{14}, \quad Re \geq 10^4, 0.5 \leq Pr \leq 100 \quad [1, 10] \] (7)

\[\text{Dittus-Boelter: } Nu = 0.023 \cdot Re^{0.8} \cdot Pr^{0.4}, \quad Re \geq 10^4, 0.6 \leq Pr \leq 2000 \quad [1, 2, 4, 9, 11] \] (8)

\[\text{Hausen: } Nu = 0.116 \cdot \left(Re^{1.3} - 125 \right) \cdot Pr^{1/3} \cdot \left[1 + \left(d/L \right)^{1/2} \right], \quad 2200 < Re < 10^4 \quad [1, 2, 4, 9] \] (9)

\[\text{Gnielinski: } Nu = \frac{(f/8) \cdot (Re - 1000) \cdot Pr^{1/3}}{1 + 12.7 \cdot (f/8)^{1/2} \cdot (Re^{2/3} - 1)}, \quad 2100 < Re < 10^4, 0.6 < Pr < 2000 \quad [1, 4, 5, 11] \] (10)

Table 1
TEMPERATURE AND MASS FLOW RATE MEASUREMENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Inner Tube</th>
<th>Inner annulus</th>
<th>Outer annulus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m_{C1}), (t_{C1,in}), (t_{C1,out})</td>
<td>m_{H}, (t_{H,in}), (t_{H,out})</td>
<td>m_{C2}, (t_{C2,in}), (t_{C2,out})</td>
</tr>
<tr>
<td>1</td>
<td>0.031 12.1 14.5</td>
<td>0.043 60.0 52.1</td>
<td>0.033 12.1 14.7</td>
</tr>
<tr>
<td>2</td>
<td>0.028 12.6 14.9</td>
<td>0.029 60.4 50.3</td>
<td>0.028 12.6 15.2</td>
</tr>
<tr>
<td>3</td>
<td>0.028 11.3 13.9</td>
<td>0.036 60.2 51.2</td>
<td>0.028 11.3 14.2</td>
</tr>
<tr>
<td>4</td>
<td>0.028 10.9 14.0</td>
<td>0.036 70.3 59.6</td>
<td>0.028 10.9 14.4</td>
</tr>
<tr>
<td>5</td>
<td>0.028 11.3 15.4</td>
<td>0.035 86.4 72.3</td>
<td>0.031 11.3 15.6</td>
</tr>
<tr>
<td>6</td>
<td>0.028 13.4 16.4</td>
<td>0.028 70.4 58.2</td>
<td>0.028 13.4 16.7</td>
</tr>
<tr>
<td>7</td>
<td>0.025 17.2 18.7</td>
<td>0.012 60.5 45.0</td>
<td>0.028 17.2 19.0</td>
</tr>
<tr>
<td>8</td>
<td>0.025 19.3 20.8</td>
<td>0.012 60.5 46.2</td>
<td>0.014 19.3 22.4</td>
</tr>
</tbody>
</table>

Fig. 1 The longitudinal section of the heat exchanger tubes

The heat transfer coefficients in a triple concentric-tube heat exchanger are: the heat transfer coefficient for the inside surface of the inner tube, \(\alpha_1 \), the heat transfer coefficient for the outside surface of the intermediate tube, \(\alpha_3 \), and, for the heat transfer between the hot fluid - outer surface of the inner tube and the inner surface of the intermediate tube, there can be estimated one heat transfer coefficient \(\alpha_2 \) [8, 12 - 14].

The heat transfer analysis is based on the following heat balance equation:

\[Q = Q_{c1} + Q_{c2} \]

where the received heat flow rates can be calculated as follows

\[Q_{c1} = m_{c1} \cdot c_{p,c1} \cdot (t_{c1,out} - t_{c1,in}) \]

\[Q_{c2} = m_{c2} \cdot c_{p,c2} \cdot (t_{c2,out} - t_{c2,in}) \]

For the calculation of experimental \(\alpha_2 \), it is used the following expression:

\[m_{H} \cdot c_{p,H} \cdot (t_{H,in} - t_{H,out}) = \alpha_2 (A_{1,0} + A_{2,j}) (t_{c} - t_{w}) \]

where:

\[\alpha_2 = \frac{A_{1,0} \cdot A_{2,j}}{A_{1,0} + A_{2,j}} \]
The criteria relations established by Sieder-Tate and Dittus-Boelter for turbulent regime, for an applicability in the transitional regime (2300 < Re < 10^4) were corrected with the Ramm factor [2]: f = 1 - (6 \times 10^{-3} / Re^{0.84}).

The correlations used to calculate α_2 and α_3 are the following:

Sieder-Tate:

\[Nu = 1.86 \left(Re \cdot Pr \cdot d / L \right)^{0.34} \left(\frac{\mu}{\mu_s} \right)^{0.14} \left(\frac{d}{L} \right)^{0.84} \left(\frac{Pr}{Pr_f} \right)^{0.25} \]

Re < 2100, 0.5 < Pr < 17000, \left(Re \cdot Pr \cdot d / L \right)^{0.34} \left(\frac{\mu}{\mu_s} \right)^{0.14} > 2 [1, 4].}

M. Rubinstein: $Nu = c \left(Re \cdot Pr \cdot d / L \right)^{0.34}$, (12)

Re < 2100, c = 1.60 for cooling and 2.40 for heating.

Miheev: $Nu = 4.366 \left[1 + 0.032 \cdot Re \cdot Pr^{0.16} \cdot \frac{d}{L} \right] \left(Re \cdot Pr \cdot d / L \right)^{0.84}$

Re < 2100, 0.7 < Pr < 1000 and a constant wall heat flux [2].

Hausen: $Nu = 3.657 + 0.0668 \left(Re \cdot Pr \cdot d / L \right)^{0.34} + 0.04 \left(Re \cdot Pr \cdot d / L \right)^{0.84}$

Re < 1000 [5].

Gnielinski:

$Nu = 3.66 + 1.2 \left(\frac{Pr}{Pr_f} \right)^{0.14} \left(\frac{Re \cdot Pr \cdot d / L}{d_{15}} \right)^{0.34}$

Re < 2100 [1, 6].

Reynolds, Prandtl (Pr) and Nusselt numbers were calculated using the following equations:

\[Re = \left(\frac{w \cdot \rho \cdot L}{\mu} \right) \]

\[Pr = \left(\frac{c_p \cdot \rho \cdot \mu}{\lambda} \right)^{0.14} \]

\[Nu = \left(\frac{\alpha \cdot L}{\lambda} \right)^{0.14} \]

The characteristic length, L, chosen for the calculation of Re and Nu numbers in the annuli is the equivalent hydraulic diameter d_e.

The equivalent hydraulic diameter for the inner annulus, $d_{15,2}$, is $d_{15,2} = d_{15,1} - d_{15,0}$ and for the outer annulus, $d_{15,3}$, is $d_{15,3} = d_{15,1} - d_{15,0}$. In the equation (16) the linear average velocity, w, for the three fluids has the following equations:

\[w_{15} = 4 \cdot m_{15} \left(\frac{\pi \cdot d_{15}^2}{\rho_{15}} \right) \]

\[w_{15} = 4 \cdot m_{15} \left(\frac{\pi \cdot (d_{2,15} - d_{1,15}) \cdot \rho_{15}}{\rho_{15}} \right) \]

\[w_{15} = 4 \cdot m_{15} \left(\frac{\pi \cdot (d_{3,15} - d_{2,15}) \cdot \rho_{15}}{\rho_{15}} \right) \]

The physical properties of the fluids were calculated at the arithmetic average between the inlet and outlet temperatures. The simplex (μ/μ) \[0.14\] in equations (7), (9) and (11) and (Pr/Pr_{15}) \[0.25\] in equation (13) were considered equal to 1.

Oil specific heat and thermal conductivity were estimated by using the following equations [2]:

\[c_p = \left[(2.964 - 1.332 d_{15}^{0.1}) + (0.006148 - 0.002308 d_{15}^{0.1}) \right] \cdot (0.0538 K + 0.3544) \]

where $d_{15}^{0.1}$ is 0.885 and the characterization factor, K, is 11.8.

\[\lambda = 0.1172 - 6.33 \cdot 10^{-3} \cdot t \cdot m^{0.15} \]

The density and kinematic viscosity of the oil were calculated using the equations established based on experimental determinations of these properties:

\[\nu = 0.034 \cdot t^{-1.8722}, R^2=0.8942, R^2=0.9974 \]

The Gnielinski correlations [1, 4 - 6, 11] used for the calculation of α_1 (eq. (10)) and α_3 (eq. (15)) give the best results in accordance with experimental data.

The calculated values for the linear average velocities, physical properties, Re, Pr, Nu numbers, heat transfer coefficients, the received heat flow rates and the wall

<table>
<thead>
<tr>
<th>No.</th>
<th>w_{15}</th>
<th>ρ_{15}</th>
<th>c_p_{15}</th>
<th>μ_{15}</th>
<th>λ_{15}</th>
<th>Re_{15}</th>
<th>Pr_{15}</th>
<th>Nu_{15}</th>
<th>α_{15}</th>
<th>Q_{15}</th>
<th>$I_{w_{15}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.27</td>
<td>999.5</td>
<td>4187</td>
<td>119</td>
<td>0.583</td>
<td>2713</td>
<td>8.6</td>
<td>21.9</td>
<td>1062</td>
<td>307</td>
<td>19.7</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>999.4</td>
<td>4187</td>
<td>119</td>
<td>0.584</td>
<td>2497</td>
<td>8.5</td>
<td>19.3</td>
<td>939</td>
<td>267</td>
<td>20.1</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>999.6</td>
<td>4188</td>
<td>122</td>
<td>0.581</td>
<td>2418</td>
<td>8.8</td>
<td>18.6</td>
<td>901</td>
<td>302</td>
<td>20.1</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>999.6</td>
<td>4188</td>
<td>122</td>
<td>0.581</td>
<td>2408</td>
<td>8.8</td>
<td>18.5</td>
<td>896</td>
<td>361</td>
<td>21.4</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>999.6</td>
<td>4187</td>
<td>119</td>
<td>0.583</td>
<td>2470</td>
<td>8.6</td>
<td>19.1</td>
<td>925</td>
<td>477</td>
<td>24.8</td>
</tr>
<tr>
<td>6</td>
<td>0.22</td>
<td>999.3</td>
<td>4185</td>
<td>114</td>
<td>0.586</td>
<td>2321</td>
<td>8.2</td>
<td>17.0</td>
<td>832</td>
<td>314</td>
<td>23.3</td>
</tr>
<tr>
<td>7</td>
<td>0.22</td>
<td>998.7</td>
<td>4182</td>
<td>105</td>
<td>0.593</td>
<td>2520</td>
<td>7.4</td>
<td>18.7</td>
<td>925</td>
<td>157</td>
<td>21.7</td>
</tr>
<tr>
<td>8</td>
<td>0.22</td>
<td>998.4</td>
<td>4180</td>
<td>100</td>
<td>0.597</td>
<td>2662</td>
<td>7.0</td>
<td>19.9</td>
<td>988</td>
<td>156</td>
<td>23.6</td>
</tr>
</tbody>
</table>
temperatures are shown in table 2 for the inner tube and in table 3 for the outer annulus.

Since the tubes walls are thin, there were obtained \(t_{w,1} \approx t_{w,2} \) and \(t_{w,4} \approx t_{w,3} \). The calculated values for the average linear velocities, physical properties, \(Re \) and \(Pr \) numbers, the heat flow rates, the wall temperatures in inner annulus and the experimental values of \(\alpha_2^\text{exp} \) obtained from equation (4) are shown in table 4.

From equations (11) - (15) used for the calculation of \(\alpha_2 \), the correlations established by Sieder-Tate [1-4], Rubinstein (for heating) and Miheev [2] for the flow through circular ducts lead to acceptable results.

The correlation proposed for the oil laminar flow through the annulus has the general formula \(Nu = c \cdot \left(\frac{Re \cdot d_h}{L} \right)^n \cdot Pr^s \) in which to the exponent \(n \) there was assigned 1/3, as commonly found in most criteria relations.

In correlation, there was introduced the simplex \((d_h/L) \) because it was considered the direct influence of the annulus, with the length characteristic \(d_h \), and of the tube length, \(L \), on the heat transfer.

By applying the linear regression, there were obtained \(c = 2.635 \) and \(m = 0.413 \). Thus, the correlation obtained is

\[
Nu = 2.635 \cdot \left(\frac{Re \cdot d_h}{L} \right)^{0.413} \cdot Pr^{1/3} \tag{26}
\]

In order to compare experimental and predicted data, there was calculated the average deviation \(\delta_{avg} \) with the following equation:

\[
\delta_{avg} = \frac{1}{N} \sum_{i=1}^{N} \left(\alpha_{\text{exp}} - \alpha_{\text{calc}} \right) / \alpha_{\text{calc}} \tag{27}
\]

Results and discussions

For the water stream flowing through the inner tube in the transitional regime, the errors between \(Nu \) numbers calculated with the Gnielinski correlation (eq. (10)) [1, 4, 5, 11] and \(Nu \) numbers calculated with equations (7) - (9) are between 15 - 28 % and, for water stream flowing through the outer annulus in laminar regime, the errors between \(Nu \) numbers calculated with Gnielinski correlation (eq. (15)) [1, 6] and \(Nu \) numbers calculated with equations (12) and (14) are between -6 - 19 %.

The experimental conditions for oil can be summarized, as follows:

- Laminar flow regime \((22 < Re_H < 141) \);
- Neglect of the conduction in the axial direction \((Pe_H = Re_H \cdot Pr_H \gg 100) \);
- Neglect of the natural convection effects as the density values into and out of the tube are very close; \(- L_1/d_{h,2} = 99.4 \) and \(d_2/i_{d,1} = 1.86 \).

The proposed correlation for the flow through the annular space verifies the values of the experimental heat transfer coefficients. The average deviations of the experimental values in comparison with the predictive values, obtained from the existing correlations for the flow through circular ducts, are 6 % for the Rubinstein and Miheev [2] and 37 % for Sieder-Tate [1 - 4]. On the other hand, the Hausen [5] correlation for the flow through circular spaces and Gnielinski [1, 6] correlation for the flow through annular spaces are:

Table 3

VALUES OF \(\alpha_3 \) CALCULATED BY USING GNIELINSKI CORRELATION, EQUATION (15)

Table 4

VALUES OF \(\alpha_{\text{exp}} \) CALCULATED BY USING EQUATION (4)
space give unsatisfactory results. It is found that these correlations are suitable for water and less suitable for oil.

Figure 2 shows the variation of values \(\alpha_{exp} \) where \(\alpha \) was calculated by using Sieder-Tate, Rubinstein and Miheev correlations and the correlation established in this paper \((\alpha_{exp}) \) with \(Re \) number.

Figure 2 illustrates that experimental results have a similar profile to the values predicted with Rubinstein and Miheev correlations, that are recommended for the flow through circular spaces and with the correlation established in this paper.

The results of the experimental \(Nu \) number, \(Nu_{exp} \), and the one calculated with the established correlation, \(Nu_{calc} \), are plotted in figure 3.

An acceptable curve is obtained for the parameters represented. More than 98% of the data could be captured by the curve fit and, therefore, an accurate description of the \(Nu \) number can be determined. The errors in using \(Nu_{calc} \) as opposed to \(Nu_{exp} \) are ± 4%.

Conclusions

In this paper, it was analysed the hydrocracked oil-water heat transfer in an experimental triple concentric-tube heat exchanger. The heat exchanger is operated under the following conditions: counter-current flow, transitional flow regime in the inner tube and laminar flow regime in the inner and outer annuli. Based on experimental data, a Nusselt number correlation for the heat transfer coefficient calculation at the flow of hydrocracked oil through the inner annulus is established. The conditions and range of validity for the proposed correlation are: \(22 < Re < 141, 132 < Pr < 269, L_i/d_{2,i} = 99.4, d_2/d_{1,o} = 1.86 \) and horizontal smooth circular tubes with shorter lengths. The experimental values of the heat transfer coefficient are in concordance with the results obtained from Rubinstein and Miheev [2] correlations, recommended for the flow through circular space, and for which the characteristic length considered in Reynolds and Nusselt numbers is the hydraulic diameter. For the experimental tests presented there were obtained values of \(\alpha_i \) and \(\alpha_o \) between 280 and 1062 W/m²°C, and \(\alpha_2 \) between 96 and 166 W/m²°C.

Nomenclature

- \(A \) – heat transfer area, m²;
- \(c \) – specific heat, J/kg°C;
- \(D \) – diameter of the outer tube, m;
- \(d \) – diameter / diameter of the inner tube, m;
- \(K \) – characterization factor;
- \(L \) – length, m;
- \(m \) – mass flow rate, kg/s;
- \(N \) – number of points;
- \(Nu \) – Nusselt number;
- \(Pe \) – Peclet number;
- \(Pr \) – Prandtl number;
- \(Q \) – heat flow rate, W;
- \(Re \) – Reynolds number;
- \(t \) – temperature, °C;
- \(w \) – linear average velocity, m/s.

Greek letters

- \(\alpha \) – heat transfer coefficient, W/m²°C;
- \(\lambda \) – thermal conductivity, W/m·°C;
- \(\mu \) – dynamic viscosity, kg/m·s;
- \(\nu \) – kinematic viscosity, m²/s;
- \(\rho \) – density, kg/m³.

Subscripts

- \(1 \) – inner tube;
- \(2 \) – intermediate tube / inner annulus;
- \(3 \) – outer tube / outer annulus;
- \(C1, C2 \) – cold fluids;
- \(Co \) – copper;
- \(c \) – characteristic;
- \(calc \) – calculating;
- \(exp \) – experimental;
- \(H \) – hot fluid;
- \(h \) – hydraulic;
- \(i \) – inner;
- \(in \) – inlet;
- \(o \) – outer;
- \(out \) – outlet;
- \(w \) – wall.

References

Manuscript received: 5.05.2014

REV. CHIM. (Bucharest) • 66 • No. 1 • 2015 http://www.revistadechimie.ro 87