Ionic polymers may be divided into two groups: polyelectrolytes (PE) and polyzwitterions (PZ) [1]. The polyelectrolytes have ionisable functional groups that are either anionic or cationic. The charge may be along or pendant to the polymeric chain and they are balanced by small counterions. Zwitterionic polymers have both cationic and anionic charges, along or pendant, to the same polymeric chain [2, 3].

One of the major classes of PZ is represented by the polybetaines. At these polymers the two opposite charges are located in the same repeat unit, with an alkyl group between them. The positive charge is due to a quaternary ammonium group whereas the anionic charge may be due to carboxylate (polycarboxybetaines/polycarboxylates) and sulfonate (polysulfobetaines) or phosphate/phosphonate/phosphinate group (polyphosphobetaines).

The literature data show that the polybetaines are performed by three ways: (i) betainization of an acrylic or vinylic monomer which contains a tertiary amine group followed by (co) polymerization of the betaine monomer; (ii) betainization of a previously performed polymer containing tertiary amine group, so-called precursor, by the suitable polymer-analogous reaction; (iii) the Michael addition reaction [4]. The second synthesis pathway was especially used for the achievement of poly(carboxybetaines) based on poly(4-vinylpyridine) (P4VP). The betainization of P4VP was routinely by the following protocol: quaternization of the polymer with esters of the betaines based on poly(4-vinylpyridine) as well as their molar transformation degree values were determined by using 1H NMR spectra.

* email: checherita.laura@gmail.ro

Viscometric Study of some Polyzwitterions based on poly(4-vinylpiridine)

STEFANIA RACOVITA¹, SILVIA VASILIU², CEZAR DORU RADI², LENUTA PROFIRE³, LAURA CHECHERITA⁴*, LILIANA FOIA³

¹Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Vodă Alley, 700487, Iași, Romania
²“Gh. Asachi” Technical University, Faculty of Textiles-Leather and Industrial Management, 29 Mangeron Bd., 700500 Iași, Romania
³“Gr.T.Popă” University of Medicine and Pharmacy, Faculty of Dental Medicine, 16 Universitatii Str., 700115, Iasi, Romania
⁴“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Vodă Alley, 700487, Iași, Romania

The viscometric behavior of the poly(carboxybetaines) possessing structural units of [4-vinyl-1-(2-carboxymethyl) pyridinium betaine] and [4-vinyl-1-(2-carboxyethyl) pyridinium betaine] was investigated. Deionized water as well as CaCl$\textsubscript{2}$ and NaCl aqueous solutions of different concentrations were used as solvents. The solubility and viscometric behaviors of the two poly(carboxybetaines) were strongly dependent on the chemical nature of the spacer between N$^+$ and COO$^-$ groups and the nature of the solvent. Einstein-Simha and Rao equations were used to assess the intrinsic viscosity values.

Keywords: poly(carboxybetaines), Rao and Einstein-Simha equations, water-soluble polymers, intrinsic viscosity

In this paper were applied two empirical equations to determine the intrinsic viscosity values for two poly(carboxybetaines) based on poly(4-vinylpiridine) namely these with [4-vinyl-1-(2-carboxymethyl) pyridinium betaine] (P4VPB-1) and [4-vinyl-1-(2-carboxyethyl) pyridinium betaine] (P4VPB-2) structural units in amount higher than 90%. The results could be useful in finding new applications for these polybetaines in medicines.

Experimental part

Materials

Poly(4-vinylpiridine) (M\textsubscript{w} = 60.000 g/mol), acrylic acid and sodium chloroacetate were purchased from Aldrich Chemical Co.. The acrylic acid was distilled in vacuum prior to use.

Synthesis of poly(carboxybetaines)

The reactions between P4VP with sodium chloroacetate and acrylic acid were performed as previously shown [5]. The synthesis of poly(carboxybetaines) is depicted in figure 1.

The structures of the polymers obtained by the reaction of poly(4-vinylpiridine) as well as their molar transformation degrees values were determined by using 1H NMR spectra.
1H NMR spectra were recorded in CD3OD at 90MHz on a Varian EM 390 spectrometer. The signal from trace of CHD2OD (3.42ppm) was used as a reference signal.

The spectra of P4VP, P4VPB-1 and P4VPB-2 show the significant differences between the aromatic proton chemical shifts in neutral and ionic structures. The two aromatic proton signals of 4-substituted pyridine ring are shifted from about 6.8 and 7.3 ppm, for neutral units, to about 7.5 and 8.8ppm, respectively, for betaine units. The spectral difference between the two kinds of zwitterionic polymer units is that the units 4VPB-1 generates a singlet signal at 5.2ppm for N+-CH2-COO- protons, while the groups N+-CH2-CH2-COO- show signals at 4.8 and 2.9ppm.

Viscometric behaviours and data processing

Solution viscosities were determined with an Ubbelohde viscometer at 25.0 ± 0.05°C (flow time 168s for distilled water). All the viscometric measurements were achieved in triplicate and the average values were plotted. The polymer samples were dissolved in solvent (water or salt solutions) to yield stock solutions. These solutions were subsequently diluted with the appropriate above-mentioned solvents and allowed to age for 24 h before the viscometric determinations.

The type of behaviour was established from reduced viscosity (η_r) versus polymer mass concentration (c) plots. The values of the intrinsic viscosity, $[\eta]$ were estimated by means of the empirical or semi-empirical equations of Einstein-Simha (1) and Rao (2) [14, 15]:

$$\eta_r = 1 + \frac{[\eta]}{c}$$ \hspace{1cm} (1)

where η_r is the relative viscosity.

$$\frac{1}{2[\eta^{1/2} - 1]} = \frac{1}{[\eta]} c - \frac{a - 1}{2.5}$$ \hspace{1cm} (2)

where a is the specific coefficients ($a = 1/\Phi_m$, Φ_m is the maximum volume fraction to which the suspended particles can pack). When $2(\eta^{1/2} - 1)$ is plotted as a function of reciprocal of concentration (g/dl), the slope yields the intrinsic viscosity and the intercept gives the value of a and consequently Φ_m. The Φ_m value is a measure of the quality of solvent. The lower Φ_m values indicating the lower quality of solvent and polymer aggregation. When a Φ_m value is near to or equal to unity indicate a good solvent.

Results and discussions

Solubility of polycarboxybetaines

Observations about the dissolution of the poly(carboxybetaines) in discussion are presented in table 1. NaCl, CaCl2 and CdCl2 were chosen as representative salts for generation of monovalent, divalent and transitional metal ions respectively. About the dissolution in water with CdCl2 it was observed that the poly(carboxybetaines) dissolve initially but precipitate during or immediately after dissolution. Such a behaviour might be related with the property of Cd2+ ions to form coordination bonds with the groups COO-, besides the ionic bonds.

Viscometric behaviours

P4VPB-1 is not soluble in pure water, but is soluble in aqueous salt solutions (i.e., NaCl and CaCl2). The insolubility in water may be explained by the chemical structure of P4VPB-1. Thus, because the chemical bond distance between the counterions in the same zwitterionic group, N+-CH2-COO-, is too short for cyclization, the charge neutralization leads to a network with ionic crosslinks, which are not too dense or strong, probably. Such a network dissolves in salty water when the salt ion-polymer interactions are strong enough and fragmented to cancel the crosslinks.

The viscometric behaviours of P4VPB-1 in 0.05 and 0.5 M aqueous solutions of NaCl and CaCl2 are plotted in figure 2. From the plots of the figure 2 can be observed the following aspects:(i) the reduced viscosities increasing with salt concentration; (ii) the reduced viscosities values

Table 1

<table>
<thead>
<tr>
<th>SOLUBILITY OBSERVATION ON THE POLY(CARBOXYBETAINES) STUDIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>P4VPB-1</td>
</tr>
<tr>
<td>P4VPB-2</td>
</tr>
</tbody>
</table>
decreasing with the salt cation valence and (iii) the reduced viscosities are insensitive to the polymer concentration, i.e., P4VPB-1 exhibits a behaviour of hard-sphere suspensions in all the solvents. The last characteristic has been also reported for some poly(sulfobetaines) [14]. For such systems, it is indicated to evaluate the viscosity data using a modified Einstein-Simha equation (1). Also, the Rao equation (2) was used for calculation of the intrinsic viscosity of the P4VPB-1. This equation has been applied first in the case of neutral polymers [9] and then for the polyelectrolytes [16-20].

Figures 3 and 4 illustrate the plots from the Einstein-Simha and Rao equations from P4VPB-1. The linearity of the data and an intercept value of 1 (fig. 3) confirm that P4VPB-1 behaves as a suspension in aqueous solution of salts.

Viscosimetric data for P4VPB-1 analyzed by Einstein-Simha and Rao equations led to the $[\eta]$ and Φ_m values given in table 2.

From the data listed in table 2 one can say that the $[\eta]$ values determined by the two equations are in good agreement. The intrinsic viscosity, which is a measure of the macromolecular chain extension, is lower for CaCl$_2$ solution than for NaCl solutions of the same molar concentration (table 2). This fact may be explained by two opposite effects of the divalent cations, (i) detachment of polymer-polymer ionic bonds, and (ii) coupling as two COO$^-$ groups, unlike the monovalent cations, which produce only concentration of polymer-polymer interactions. Also, the Φ_m value is low for CaCl$_2$ solution than for NaCl solutions and increase with the salt concentration.

Table 2 shows also that the intrinsic viscosity, calculated by these two equations, increases with the salt concentration. This characteristic and the insolubility in pure water suggests that P4VPB-1 behaves as an “anti-polyelectrolyte” when is dissolved in salt aqueous solutions.

The solubility of P4VPB-2, which is better than that of P4VPB-1, allowed viscosity determinations within water and salt solutions. Figure 5 displays the dependence of the reduced viscosity on the polymer concentration.

The data presented in table 3 are in good agreement with $[\eta]$ values calculated by these two equations. From the table 3 can be mentioned the following aspects: (i) the $[\eta]$ and Φ_m values increasing with increasing salt concentration; (ii) the salts which contain divalent ions determine the lower $[\eta]$ and Φ_m values; (iii) in the water is observed the highest $[\eta]$ value associated with the low Φ_m value. Last observation could be explained as due to the fact that in pure water this polymer can exist as aggregations of polymer chain with spherical conformations. The addition of small salt amounts leads
Table 3
VARIATION OF THE INTRINSIC VISCOSITY AND Φ_m OF P4VPB-1 AS A FUNCTION OF SOLVENT NATURE

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>$[\eta]_{Einstein-Simha}$ (dL/g)</th>
<th>$R^2_{Einstein-Simha}$</th>
<th>$[\eta]_{Rao}$ (dL/g)</th>
<th>R^2_{Rao}</th>
<th>Φ_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4VPB-2</td>
<td>H$_2$O</td>
<td>0.325</td>
<td>0.999</td>
<td>0.306</td>
<td>0.999</td>
<td>0.401</td>
</tr>
<tr>
<td></td>
<td>NaCl 0.05M</td>
<td>0.187</td>
<td>0.999</td>
<td>0.182</td>
<td>0.999</td>
<td>0.678</td>
</tr>
<tr>
<td></td>
<td>NaCl 0.5M</td>
<td>0.232</td>
<td>0.999</td>
<td>0.318</td>
<td>0.999</td>
<td>0.904</td>
</tr>
<tr>
<td></td>
<td>CaCl$_2$ 0.05M</td>
<td>0.184</td>
<td>0.999</td>
<td>0.177</td>
<td>0.998</td>
<td>0.544</td>
</tr>
<tr>
<td></td>
<td>CaCl$_2$ 0.5M</td>
<td>0.285</td>
<td>0.999</td>
<td>0.279</td>
<td>0.999</td>
<td>0.807</td>
</tr>
</tbody>
</table>

R^2 correlation coefficient

Fig. 5 The dependence of reduced viscosities on polymer concentration for P4VPB-2

to the breakup of the inter- and intrachain associations, therefore to the decrease of $[\eta]$ while the higher salt amounts determine the individual polymeric chain extension and the $[\eta]$ increase as well.

Conclusions
The study provides information about the viscosimetric behaviour of the two pol(carboxybetaines) based on ply(4-vinylpiridine). From the studies achieved it was observed the anti-polyelectrolyte behaviour for P4VPB-1. P4VPB-2 is soluble both in water and aqueous solution of salts. The solubility in water is due to the possibility of an inner-salt structure, which yielded to the neutralization between N^+ and COO- in the same betaine unit. In water this structure is stronger than in aqueous solution of salts because water is a poorly solvent for P4VPB-2. The experimental data for these polymers were plotted based on Einstein-Simha and Rao equation terms, when very close values for $[\eta]$ were obtained.

References
5. LUCA, C., NEAGU, V., VASILIU, S., BARBOI, V., Focus on Ionic Polymers, Edited by DRAGAN, E.S., Research Singpost, Kerala, India, 2005, p. 117.

Manuscript received: 22.07.2013