Evaluation of Electro Coagulation Process Performances for Decolorization of Alizarin Saphirol Containing Solution

ALEXANDRA RALUCA MIRON1*, CRISTINA MODROGAN1, OANAMARI DANIELA ORBULET1
1University Politehnica from Bucharest, Inorganic Substances and Environmental Protection Department, 1-7 Polizu Str., 011061, Bucharest Romania

Electro coagulation represents a good alternative to the conventional treatment techniques for dye containing wastewaters. In this paper, electrochemical coagulation efficiency (expressed in terms of colour removal degree) with aluminum and iron sacrificial anodes has been tested on an Alizarin Saphirol containing solution, an acidic dye that belongs to antraquinone class. The influence of electrolysis time, operating current density, pH value and anodic material type on process performances was investigated. It has been concluded from experimental results analysis that the solution can be effectively treated using electro coagulation. The maximum removal efficiency, 99% was recorded at 200 A/m², pH=6, after 12 min.

Keywords: electro coagulation, sacrificial anode, Alizarin Saphirol, antraquinonic dye, wastewater treatment.

Water and energy have been identified by Smalley as two top challenges for 21st century [1]. Deteriorations in the quality of source and increased demand coupled with more stringent water quality regulations have resulted in an increase in the implementation of new treatment techniques [2].

Textile industries are considered as one of the most polluting in terms of volume and complexity of wastewater. Effluents from dyeing industry are not only colored but also contain high amounts of organic matter and dissolved solids [3]. Dyes are gradually emerged as a class of anthropogenic organic substances that pose a serious threat to the environment and human health. Furthermore, dye effluent may contain chemicals that are toxic, carcinogenic or mutagenic for microbes and fish species [4].

Residual dyestuffs, although only present in small amounts, are sources of aesthetic pollution and determine water eutrophication, interfere with light penetration that disturbs biological processes and thereby have to be removed from wastewater before being discharged [5].

At this moment, the dye effluents are treated by several techniques [2]. Decolorization of Alizarin Saphirol containing wastewater by electrochemical coagulation has become a very attractive method in recent years. The dye containing solution can be effectively treated using electro coagulation. Electro coagulation represents a good alternative to the conventional treatment techniques for dye containing wastewaters. In this paper, electrochemical coagulation efficiency (expressed in terms of colour removal degree) with aluminum and iron sacrificial anodes has been tested on an Alizarin Saphirol containing solution, an acidic dye that belongs to antraquinone class. The influence of electrolysis time, operating current density, pH value and anodic material type on process performances was investigated. It has been concluded from experimental results analysis that the solution can be effectively treated using electro coagulation. The maximum removal efficiency, 99% was recorded at 200 A/m², pH=6, after 12 min.

If $M = Al$ or Fe, the generated Fe^{3+} or Al^{3+} ions will immediately undergo further spontaneous reactions to produce corresponding hydroxides and/or polyhydroxides. For example, Al^{3+} ions on hydrolysis may generate: $Al(H_2O)_4^{3+}$, $Al(H_2O)_3(OH)^{2+}$, $Al(H_2O)_2(OH)_2^{3+}$, and the hydrolysis products may form many monomeric and polymeric species such as: $Al(OH)^{3+}$, $Al(OH)_{4+}$, $Al(OH)_{5+}$, $Al(OH)_{6+}$, $Al(OH)_{7+}$, $Al(OH)_{8+}$, $Al(OH)_{9+}$, $Al(OH)_{10+}$, $Al(OH)_{11+}$, $Al(OH)_{12+}$, $Al(OH)_{13+}$, $Al(OH)_{14+}$, $Al(OH)_{15+}$, $Al(OH)_{16+}$, $Al(OH)_{17+}$, $Al(OH)_{18+}$, $Al(OH)_{19+}$, $Al(OH)_{20+}$, $Al(OH)_{21+}$, $Al(OH)_{22+}$, $Al(OH)_{23+}$, $Al(OH)_{24+}$, depending on the pH of the aqueous medium [11-13]. The dye containing solution decolourization by electro coagulation has become a very attractive method in recent years.

The influence of the operational parameters (current density, electrolysis time and initial pH) on the electro coagulation efficiency of treatment of textile wastewater containing reactive dyes was evaluated. The experiments were carried out using a 2^3 full factorial statistical analysis in order to establish the optimum current density and electrolysis time for achieving a 90-95% colour removal efficiency [14].

The removal of Acid yellow 36 from an aqueous solution by the electro coagulation method using iron electrodes has been investigated by Kashefialast et al. The authors established that the electro coagulation process has been
influenced by the following parameters: current density, initial pH, electrolyte concentration and electrolysis time. The results showed that at 50 ppm initial dye concentration, the dye was effectively removed at pH range 7 – 9, time of electrolysis of approximately 6 min, 127.8 A/m² current density, achieving complete decolourization [15].

A bipolar packed bed electrochemical reactor consisting of soluble electrodes was used in the batch mode to remove dye and 100% color removal was achieved in relatively short time (3-5 min) the corresponding power consumption being 2.24 kWh/m² [16].

An electro coagulation system with aluminium electrodes for decolourization of remazol red 133 dye solution was proposed. The results obtained showed that rising the pH from 5 to 9 lead to a decrease of the color removal efficiency from 90 to 70%, the same situation was found when the concentration increased from 100 to 1000 mg/L [17].

The main objectives of the study were: to establish the operational parameters (pH, current density, electrolysis time and anodic material type) influence on electro coagulation process efficiency, to find the best operating conditions and to evaluate the electro coagulation performances for decolourization an Alizarin Saphirol containing solution.

Experimental part

Alizarin Saphirol (acid blue 25) dye was provided by Sigma-Aldrich and used as received without further purification. Alizarin Saphirol is an antraquinonic acid dye, soluble in water, used to colour the nylon, cotton, wool fibers, in food industry, detergents industry, cosmetics, ink industry. In cosmetics it is used in semi-permanent and temporary hair colouring products at concentrations up to 0.5% and as colorant in other cosmetic products which have short contact with the skin [18].

The electro coagulation unit used consisted of an electro coagulation reactor (a jar made of theromoresistent glass with 100 mm x 180 mm dimensions), four electrodes (two anodes and two cathodes) with identical dimensions 45 x55 x20 mm placed in parallel connection at 25 mm constant distance, a stabilized DC power supply and a magnetic stirrer. A short description of the electro coagulation principle is presented in figure 1 [19].

Experiments were carried out with 10⁻⁴ M initial concentration of Alizarin Saphirol. At the beginning of each run, 700 mL of solution was prepared and placed in the electrochemical cell, the electrodes were immersed in the solution and connected to a Mastech HY3005D DC power supply. The pH was adjusted to desired value using 6% H₂SO₄ and respectively, 0.1N NaOH solutions and during the whole period of experiments was monitored using a Consort C380 pH-meter (0.01 pH resolution, Pt1000 sensor).

At the end of the electrocoagulation experiments, before analysis, samples were filtered using white ribbon filter paper. The dye concentration was determined at the wavelength corresponding to the maximum absorbance (600 nm) using a UV-Vis double beam spectrophotometer Cintra 5 (spectral range 190-1100 nm).

Table 1

<table>
<thead>
<tr>
<th>STRUCTURE AND GENERAL CHARACTERISTICS OF ALIZARIN SAPHIROL DYE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical structure</td>
</tr>
<tr>
<td>Chemical formula</td>
</tr>
<tr>
<td>Molecular Weight (g/mol)</td>
</tr>
<tr>
<td>Commercial name</td>
</tr>
<tr>
<td>C.I. Number</td>
</tr>
<tr>
<td>λ<sub>max</sub> (nm)</td>
</tr>
<tr>
<td>Appearance</td>
</tr>
<tr>
<td>Water solubility (g/L)</td>
</tr>
<tr>
<td>LC₅₀ for fish (mg/L)</td>
</tr>
</tbody>
</table>

Note: LC₅₀ = lethal concentration 50

Fig.1. Schematic representation of the electro coagulation principle
The calculation of color removal efficiency after electrocoagulation treatment was performed using the following formula:

$$R(\%) = \frac{C_0 - C}{C_0}$$

where C_0 and C represent the concentrations of dye before and after electro coagulation in mg/L, respectively.

Results and discussion

The influence of initial pH value on color removal efficiency

The pH value represents an important parameter that influences the EC process performances because it determines the species formed in the system [20]. In order to establish its influence on EC process, the samples were adjusted to the desired pH value for each experiment by using sulphuric acid or sodium hydroxide solutions. The influence of initial pH was studied within the range 2-10. Figure 2 shows the removal efficiency of Alizarin Saphirol as a function of initial pH. The experiments on aluminum electrodes were done in the following conditions: electrolysis time (τ) = 90 min, $C_0 = 10^{-4}$M, interelectrode distance (d) = 2.5 cm, stirring rate = 200 rpm, current density (i) = 150 A/m2 and are presented in figure 2 (a). From the figure it can be seen that for pH = 2 and 10 the color removal efficiency had an interesting behaviour. At pH = 2, after the first 10 min a 75% removal efficiency was recorded, after that, the curve had a constant increase until reached 95%, after 70 min. At pH = 10, in the first 45 min the curve showed a slow and uniform growth in the first 45 min, afterwards, at 60 min a suddenly growth from 40 to 80% was observed, in the end, after 90 min the color removal efficiency being 90%.

The experiments on iron electrodes were done in the following conditions: τ = 12 min, $C_0 = 10^{-4}$M, d = 2.5 cm, stirring rate = 200 rpm, i = 150 A/m2, and are presented in figure 2 (b). It can be observed that in the iron electrodes case, the time necessary to obtain 98% colour removal efficiency is much lower (almost 7 times) than in the case of aluminium electrodes. Besides this, in the pH range 2-8, after 8 min electrolysis time the color removal efficiency was 90%. For initial pH range 4 - 8, the curve look is similarly for both anodic materials used. From results analysis it can be concluded that for aluminum electrodes, the best results were obtained at pH = 2, and for iron in the range 6-8.

During the electro coagulation process, the initial pH value changes depending on the initial value and anodic material used [21]. The evolution of the pH during the electrochemical coagulation with aluminium electrodes, τ = 90 min, $C_0 = 10^{-4}$M, d = 2.5 cm, stirring rate = 200 rpm, i = 150 A/m2 is represented in figure 3 (a).

As it can be seen, at initial pH values < 8, the final pH rises, while for initial pH > 8, final pH diminishes. The results obtained for iron electrodes, τ = 12 min, $C_0 = 10^{-4}$M, d = 2.5 cm, stirring rate = 200 rpm, i = 150 A/m2, are presented in figure 3 (b). In the case of iron electrodes, the final pH it is always higher that the initial one, the difference between initial and final value is diminishing for pH > 8 [22].

The pH variation in the case of aluminum electrodes it is attributed to the fact that for initial pH values between 4 and 9, the solution stabilizes at nearly constant value around 9 due to buffering capacity of complex nature of aqua Al$^{3+}$/Al(OH)$_3$ system [23].

The influence of current density on color removal efficiency

Current density represents the most important parameter in the electro coagulation process because directly determines the reaction rate control in the reactor. Besides this, current density influences both coagulant dosage and bubble generation rates, as well as strongly influencing both solution mixing and mass transfer at the electrodes [24]. In order to evaluate the current density influence on color removal efficiency of Alizarin Saphirol, during the experiments, the current density was varied between 50-200A/m2. The results obtained for aluminum...
electrodes, $\tau = 90$ min, $C_0 = 10^{-4}$M, $d = 2.5$ cm, stirring rate $= 200$ rpm, $i = 150$ A/m2, $pH_1 = 2$ are presented in figure 4 (a). From the graph it can be observed that in order to obtain 90% color removal efficiency in only 10 min it is necessary to apply a current density of 200 A/m2, while for 50 A/m2 the same color removal efficiency is obtained after 90 min.

The results obtained for iron electrodes, $\tau = 12$ min, $C_0 = 10^{-4}$M, $d = 2.5$ cm, stirring rate $= 200$ rpm, $i = 200$ A/m2, $pH_1 = 6$ are presented in figure 4 (b). In this case, at current density 100 A/m2, the color removal efficiency recorded after 8 min was 90%. Because current density applied to the electrolytic cell determines of Al^{3+} or Fe^{2+}/Fe^{3+} released during the anodic dissolution it can be concluded, that for iron electrodes it is not necessary to work at high current density values in order to obtain satisfactorily results. Anyway it is advisable to limit the current density in order to avoid excessive oxygen evolution as well as to eliminate other adverse effect like heat generation [25].

The influence of electrolysis time on colour removal efficiency

Reaction time is one of the parameters with high influence about electrochemical process efficiency. Electrolysis time determines generation rate and concentration of Fe^{2+}/Fe^{3+} respectively Al^{3+} ions and hydroxides released from anodes [26]. The ions generated in the system initiate particle charge neutralization and coagulation process. In order to be able to identify the influence of electrolysis time on EC performances, the current density and pH value were held constant [27].

The obtained results are showed in figure 5 (a) and (b) as dependence of colour removal efficiency on electro coagulation time. In figure 5 (a) are presented the results obtained with aluminum electrodes, $\tau = 60$ min, $C_0 = 10^{-4}$M, $d = 2.5$ cm, stirring rate $= 200$ rpm, $i = 200$ A/m2, $pH_1 = 2$ and is obvious that after 10 min, the colour removal efficiency is 90%, in the following 50 min the graph displays an uniform and constant growth, after 60 min the colour removal being 98%.

For iron electrodes, $\tau = 12$ min, $C_0 = 10^{-4}$M, $d = 2.5$ cm, stirring rate $= 200$ rpm, $i = 200$ A/m2, $pH_1 = 6$ the results are presented in figure 5 (b). It can be observed that in the first 6 min the colour removal efficiency reaches 90%, afterwards, the graph exhibits a constant growth, after 12 min the maximum removal efficiency being 99.00%. In the end, after analyzing the results obtained for iron and aluminum electrodes, it can be concluded that in only 10 min for both materials was recorded a satisfactorily value (90%) for colour removal efficiency.

The influence of anodic material on colour removal efficiency

In any electrochemical process, the electrode material has significant influence on the treatment efficiency. Therefore, appropriate selection of the electrode material is important. The electrode material for treatment of water and wastewater should also be non-toxic to human health and environment. Aluminum and iron were chosen as electrode material because these are non-toxic and easily available [28].

In figure 6 is presented the influence of anodic material on colour removal efficiency for Alizarin Saphirol dye, $C_0 = 10^{-4}$M, $d = 2.5$ cm, stirring rate $= 200$ rpm, $i = 200$ A/m2, $pH_1 = 6$. The results clearly show that iron electrodes were more effective than aluminium electrodes. As it is seen, for iron electrodes after 5 min, the colour removal efficiency was 90%, while for aluminum, after 30 min the value was 80%. The plausible reason for lower colour removal efficiency in the case of aluminium electrodes in comparison with iron could be explained considering the insufficient ability of hydrous aluminium oxide to adsorb and interact with Alizarin Saphirol molecules.
Conclusions

In this paper, electro coagulation process was used to remove colour from Alizarin Saphirol aqueous solution. The influence of various parameters such as: initial pH value, operating current density, time of electrolysis, anodic material on colour removal efficiency was studied.

Experimental results analysis revealed that It can be observed that in the iron electrodes case, the time necessary to obtain 98% colour removal efficiency is much lower (almost 7 times) than in the case of aluminium electrodes.

From results analysis it can be concluded that for aluminum electrodes, the best results were obtained at pH = 2, and for iron in the range 6-8. The results clearly show that iron electrodes were more effective than aluminium electrodes.

References

5. DUMITRU, M., SAMIDE, A., PREDA, M., MOANTA, A., Rev.Chim. (Bucharest), 60, no.9, 2009, p 957
12. CAN, O.T., KOBYA, M., DEMIRBAS, E., BAYRAMO, LU M., Chemosphere, 2005, 62, p 181
20. EMAMJOMEH, M., SIVAKUMAR, M., J.Env.Man., 2009, 90 p 1663
25. KOBYA, M., DEMIRBAS, E., CAN O.T., BAYRAMOGLU, M., J. Haz. Mat. 2006, B132, p 183

Manuscript received: 29.01.2010

Fig.6 Effect of anodic material on color removal efficiency of Alizarin Saphirol