New Azomethine Derivatives of 3-substituted-4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles as Potential Anti-inflammatory Agents

IONUT VALENTIN LEDETI1,2, VASILE NICOLAE BERCEAN4*, IONUT MIHAI TANASE1, ANDREEA ANDA CREANGA1, VALENTIN BADEA1, CAROL CSUNDERLIK1

1Politehnica University Timișoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Carol Telbisz, 300001 Timișoara, Romania.
2“VICTOR BABEȘ” University of Medicine and Pharmacy, Faculty of Pharmacy, 2 E. Murgu Square, 300041, Timișoara, Romania.
3”Victor Babes” University of Medicine and Pharmacy, Faculty of Medicine, 2 E. Murgu Square, 300041, Timișoara, Romania.

A microwave-assisted synthesis of some Schiff-base via condensation of 3-substituted-4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles with aromatic aldehydes without solvent is described.

Keywords: Schiff base, 1,2,4-triazole, microwave assisted synthesis

Schiff base (azomethine) derived from 4H-4-amino-1,2,4-triazoles attracted growing interest due to analgesic[1], anticancer[1], anti-inflammatory[11], anticonvulsant[1,2], antifungal[2] and antimicrobial [1,3,4] properties. Also, Schiff bases containing triazoles are interesting bridging ligands in the coordination chemistry of metal ions [5-8]. On the other hand, non-steroidal anti-inflammatory drugs containing acetate moiety are used in the treatment of pain and inflammation [9].

There is also a possibility, recently mentioned in literature, to attach triazoles and their derivatives to monosaccharides, in order to obtain new physiologically active compounds[10-12].

For this reason, our concerns are directed towards obtaining new Schiff bases derived from 3-substituted-4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles (2), compounds with potential biological activity and an increased capacity of complexing metal cations.

For the synthesis of Schiff bases derived from 3-substituted-4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles, are essentially two possible routes (scheme 1):

A. The alkylation of 3-substituted-4H-4-amino-5-mercapto-1,2,4-triazoles (1) to 3-substituted-4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazole (2) followed by their conversion into Schiff bases (3).

B. Obtaining Schiff bases (4) from 3-substituted-4H-4-amino-5-mercapto-1,2,4-triazoles (1), followed by ethyl chloroacetate alkylation, leading to new alkylated Schiff bases (3).

First time, we chose route A.

Synthesis of azomethine compound is usually carried out in organic medium, acid or base catalyzed, by refluxing the carbonyl and the amino compounds in the desired molar ratio[13], and for the synthesis of Schiff bases derived from 3-substituted-4H-4-amino-5-mercapto-1,2,4-triazoles (1), literature data indicate their reaction with carbonyl compounds in various conditions: ethanol in the presence of acetic acid [14], in presence of an excess amount of concd. sulphuric acid [15], in presence of diluted HCl (at pH=5-6) [16], or in presence of piperidine [17].

After several attempts using above-mentioned reaction conditions, the complete conversion of raw materials into Schiff bases failed, we resorted to using microwave-assisted synthesis method, more often indicated in literature [18,19].

* email: vbercean@gmail.com
Experimental Part

Materials and methods

The reagents were commercial products and used without further purification. 4H-4-amino-5-mercapto-3-phenyl-1,2,4-triazole (1a, R = C H₃) and 4H-4-amino-3-phenyl-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazole (2a, R = C H₃) were prepared according to the literature [20,21] and 4H-4-amino-3-benzyl-5-mercapto-1,2,4-triazole (1b, R = C₆H₅-CH₂-) and 4H-4-amino-3-benzyl-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazole (2b, R = C₆H₅-CH₂-) were obtained by our own method [22].

The microwave-assisted synthesis of azomethines was carried out in a 1100 W Emerson domestic oven. Melting points were determined on a Büchi PHMK (Veb Analytik Dresden) instrument, and thin-layer chromatography was carried out on silica gel-coated plates 60 F ₂₅₄ Merck using benzene:methanol 7:3 as eluant. IR spectra were recorded in KBr pellets on a Jasco FTIR-410 spectrophotometer. 1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance III 400 spectrometer in DMSO-d₆ using TMS as reference; chemical shifts being reported in ppm and the coupling constants in Hz. UV-VIS spectra were recorded on a Jasco UV-VIS V-530 spectrophotometer.

Microwave-assisted synthesis of azomethine from 3-substituted-4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles

0.9 mmol of ethoxycarbonyl-methylsulfanyl triazoles (2a-b) are mixed with 0.9 mmol of corresponding benzaldehyde in a 5 mL glass flask which was placed inside a Teflon sealed container. The mixture was subjected to microwave on 800W for an optimized time. The crude products were dissolved in the minimum amount of absolute EtOH and allowed to crystallize overnight at room temperature. Products (3a-d) were separated by filtration and recrystallized from absolute ethanol.

4H-4-(4-Nitro-benzylidene-amino)-5-benzyl-3-ethoxycarbonyl-methylsulfanyl-1,2,4-triazole (3b)

Yellowish powder (40% yield), m.p.=144-147 °C.

IR(KBr): 2982, 2934, 1742, 1614, 1592, 1442, 1305, 1173, 688, 491 cm⁻¹.

UV-VIS(methanol) λ(ε)×10⁻⁴): 392.6; (0.01567); 277 (respectively 286) nm.

1H-NMRδ (DMSO-d₆, 400MHz): 8.82 (s, 1H, -CH=N); 151.8 (3-C); 146.9 (4'-C); 137.4 (1'-C); 135.4 (1-C); 129.8 (2'-C, 6'-C); 126.6 (2-C, 6'-C); 128.5 (3'-C, 5'-C); 126.8 (4'-C, 5'-C); 61.2 (-O-CH₂-); 34.5 (S-CH₂-); 30.7 (P-CH₂-); 13.8 (-CH₃).

Results and discussion

In our preliminary attempts to obtain the azomethinic compounds 3a-d, 6a-d derived from 3-substituted-4H-4-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles (2a-b) or 3-substituted-4H-4-amino-5-carboxymethylsulfanyl-1,2,4-triazoles (5a-b) and substituted benzaldehydes (4-bromobenzaldehyde, 4-nitro-benzaldehyde, 2-hydroxybenzaldehyde) following the literature data, as a reaction medium we use absolute ethanol in the absence or presence of acid catalysts (5% acetic acid, <1% concd. HCl, <1% concd. H₂SO₄ or 10% concd. H₂SO₄) or base (piperidine) for 3-18 h reflux, respectively azeotropic distillation method of water formed in the reaction medium in the presence of p-toluene sulphonic acid. In our attempts, performed in the absence of catalysts, starting materials did not react, and in the case of catalyzed reactions, complex mixtures containing starting materials and one up to three products were obtained.

With our knowledge, azomethines 3a-d derived from 4H-4-amino-3-substituted-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles are not mentioned in the literature. For this reason their structures were carefully confirmed by IR, UV-VIS and NMR spectroscopy (H-NMR, 13C-NMR, COSY-2D, DEPT-135, HMOC and HMBC).

Analyzing the IR spectra, characteristic vibrations of functional groups are present: esteric (ν(C=O) 1680-1700 cm⁻¹), aromatic (ν(C=C) 1610-1630 cm⁻¹), primary and secondary amines (ν(N-H) 3300-3500 cm⁻¹).

As result of electronic transitions, in UV-VIS spectra, the compounds exhibit light absorption near 393nm and at 277 (respectively 286) nm.

By analysing the NIR and IR spectroscopic results, the condensation reaction between 4H-4-amino-3-benzyl-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles (2b, R = C₆H₅-CH₂-) with 2-hydroxybenzaldehyde lead to a mixture (product 3d could not be separated), and the condensation between 4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-3-phenyl-1,2,4-triazole (2a, R = C H₃) and 4-bromobenzaldehyde did not occur (product 3a was not obtained).

At the same time, analyzing 2D NMR ¹³C-H NMR spectra of (3b), long-distance coupling of 'J of phenyllic carbons 2'-C and 6'-C with aromatic proton (-N-CH₂-) is observed. It should be also noted that a long-distance coupling of 'J of the carbon atom 1'-C with aromatic proton=-N=CH₂-, -N-CH₂⁻ occurs. These long-distance couplings confirm the structure of the synthesized compound and allow a correct assign of chemical shifts from ¹³C-NMR and ¹H-NMR spectra.

The difficulty of obtaining azomethine derivatives of 3-substituted-4H-4-amino-5-ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles (2a, b) comparing with the facile route of obtaining them from 3-substituted-4H-4-amino-5-mercapto-1,2,4-triazoles (1a, b) [23] finds a possible explanation in tautomeric forms involved in the condensation reaction with benzaldehyde. It is known that the condensation reaction of carbonyl compounds with amines is accomplished by the nucleophilic attack of amines to the carbonyl group, followed by the elimination of a water molecule; the reaction occurs more readily with the increase of the amine nucleophilicity (scheme 2).
The decreased reactivity of the S-alkylated compounds 2a, b can be explained by the fact that the electron lone pair of nitrogen from position 4 is involved in the triazolic aromatic system, which makes the exocyclic amino group from triazoles to be an aromatic amine, slightly basic and a weak nucleophile.

Regarding the 1a, b triazoles which prefer thionic tautomeric form [24], the aromatic conjugation cannot be maintained with the lone pair of the nitrogen atom from position 4, and as a result, the exocyclic amino group is a "hydrazinic" one, with an increased density of electrons, an increased nucleophilicity, and hence an increased reactivity.

Also, the presence of benzene nucleus in 2a compound (R = C6H5-) with the inductive effect -I, entails an additional decrease in electron density at exocyclic amino group, which may explain its lack of reactivity in reactions with benzaldehydes, in contrast to compound 2b (R = C6H5-CH2-), where inductive effect of the phenyl group is diminished.

Conclusion

The condensation of 4H-4-amino-3-substituted-5-ethoxycarbonyl-methylsulfonyl-1,2,4-triazoles (2a,b) with substituted benzaldehydes under microwave irradiation lead with medium yields to corresponding Schiff bases, unlike the methods of condensation in organic solvent in the presence of acid or alkaline catalysts, which lead to mixtures.

References

6. SANCAK, K., ER, M., UNVER, Y., YILDIRIM, M., DEGIRMENCIOGLU, I., Transition Metal Chemistry 32, 2007, p.16
8. YADAV, V.K., KAR, S., L. MISHRA, Polyhedron 28, 2009, p. 121
11. SISU, I., BERCEAN, V., BADEA, V., CÄPROIU, M.T., SISU, E., Rev.Chim. (Bucharest), 60, no. 9, 2009, p. 884
14. BEKIRCAN, O., BEKTAS, H., Molecules 13, 2008, p. 2126
22. LEDEÞI, I.V., BERCEAN, V., BADEA, V., BÅLÅN, M., CSUNDERLIK, C., (unpublished results)
23. CREANGĂ A.A., BERCEAN V.N., LEDEÞI I.V., BERCEAN V.N., (unpublished results)

Manuscript received: 15.06.2010