Synthesis and separation by tritylation of two isomers: 1,2,5,6-di-O-isopropylidene-α-D-galactofuranoside and 1,2,3,4-di-O-isopropylidene-α-D-galactopyranoside

DUMITRU PETRU IGA1*, SILVIA IGA2, NICOLETA FLORENTINA PREDESCU2, ALINA NICOLESCU3
1Faculty for Biology, 95 Splaiul Independentei, 050095, Bucuresti, Romania,
2Laboratorul Central de Carantina Fitosanitara, 11 Sos. Afunati, Voluntari, Romania
3Petru Poni Institute of Macromolecular Chemistry, Group of Biospectroscopy, 41A Grigore Ghica Vodã, 700487, Iasi, Romania

The two isomers – 1,2,5,6-di-O-isopropylidene-α-D-galactofuranoside and 1,2,3,4-di-O-isopropylidene-α-D-galactopyranoside, have been obtained as a mixture, in different ratios, by heating D-galactose and acetone in a neutral or acidic medium; the neutral medium consisted in the two reagents and anhydrous copper sulfate while the acidic one contained p-toluene-sulfonic acid. The mixture of the two di-isopropylidened isomers was submitted to tritylation by reacting it with trityl chloride. In this way a mixture consisting of 1,2,5,6-di-O-isopropylidene-α-D-galactofuranoside and 1,2,3,4-di-O-isopropylidene-6-O-trityl-α-D-galactopyranoside has been obtained. By this reaction, the difference in polarity between the two isomers was highly increased, their separation being possible simply by extraction. Separation of the two isomers have been also accomplished per se by column chromatography on silica gel in a gradient of methanol in chloroform. H- and 13C-NMR spectra confirmed the structure and purity of 1,2,5,6-diisopropylidene-α-D-galactofuranoside and of 1,2,3,4-diisopropylidene-6-O-trityl-α-D-galactopyranoside.

Key words: 1,2,5,6-diisopropylidene-α-D-galactofuranoside, 1,2,3,4-diisopropylidene-α-D-galactopyranoside, 1H NMR, 13C NMR

Experimental part

H and 13C NMR spectra were registered in CDCl3, containing TMS. Thin-layer chromatography (TLC) was performed on ready-to-use glass plates covered with silica gel 60 (E. Merck). The following solvent systems (SS) were used: toluene-ethanol, 3:1 (v/v, SS 3), chloroform-methanol, 49:1 (v/v, SS II). Visualisation was made by dipping the plates in a solution of amonium molybdate, sulfuric acid and cerium(IV) sulfate, followed by heating. D-Galactose was exhaustively dried before synthesis, by keeping it in a high vacuum dessicator on phosphorus pentoxide. Two methods of synthesis have been used.

Method 1. A three necked flask containing 0.5 L of dry acetone and 2,8857 g p-toluene sulfonic acid monohydrate was brought to boiling. Separately, 15 g (83.3 mmole) of D-galactose was dissolved by heating in 130 mL dimethylformamide (DMF). Boiling of acetone was stopped and the hot solution of D-galactose was quantitatively
transferred in the flask. Refluxing was immediately resumed and lasted 5 h; solution was cooled to room temperature and a slight excess of saturated sodium carbonate was added in the flask to neutralize the acidity. The precipitate that appeared was removed by filtration and from this point processing for the two methods was identical.

Method 2. To a suspension of 75 g anhydrous copper sulfate and 0.5 L of acetone that had been heated to boiling in a three-necked flask protected against moisture, a hot solution of 15 g (83.3 mmole) D-galactose in 150 mL DMF was added under energetic stirring. Boiling under reflux was immediately resumed and after 24 h, heating was interrupted and 25 g anhydrous copper sulfate and 0.5 L dry acetone were added in the flask [11]. Boiling under reflux was continued for another 24 h and then solution was cooled to room temperature. Solids were removed by filtration and from this point processing of the filtrate was identical for the two methods. The thin syrup obtained by evaporation of solvents in vacuum was diluted with 3-4 vols of water and extracted 5-6 times with chloroform. Total chloroformic solution was dried with sodium sulfate, filtered and concentrated to dryness; the residue consists almost exclusively of 1,2,5,6-diisopropylidene-α-D-galactofuranoside and 1,2,3,4-diisopropylidene-α-D-galactopyranoside.

Tritylation. A mixture of 4 g (15.4 mmole) of diisopropylidenated galactosides was dissolved in 80 mL pyridine and 7 g (25.1 mmole) trityl chloride was added [12]. The solution was heated to 50°C for 5 h, then cooled to room temperature and concentrated to dryness in vacuum. Residue was carefully partitioned between water and hexane. After the equilibrium was established, the two layers were separated and water layer was extracted with a volume of hexane and organic layer with a volume of water. Finally, solutions in the same solvents were mixed. Water solution was evaporated to dryness and the residue, di-isopropylidenated galactofuranoside was crystallized from diethyl ether-hexane; m. p. 96-98°C, [α]D-23 -34.50 (c=1.5, methanol).

1H-NMR (CDCl3; δ, ppm; J, Hz): 5.865 (d, 3.6, H-1α of D-Galf), 4.543 (d, 2.4, H-2), 4.128 (m, H-3), 4.090-4.052 (m, H-4), 3.869-3.837 (m, 4.8, 8.0, H-6a,b); 27.425, 26.730, 26.545, 25.255, methyl groups. 13C-NMR (CDCl3; δ, ppm; J, Hz): 104.940 (C-1α of D-Galf), 87.626 (C-2), 76.182 (C-3), 85.905 (C-4), 75.347 (C-5), 65.666 (C-6); 27.425, 26.730, 26.545, 25.255, methyl groups.

Column chromatography of diisopropylidenated isomers. A mixture of 1,2,5,6-diisopropylidene-α-D-galactofuranoside and 1,2,3,4-diisopropylidene-α-D-galactopyranoside (1:2 g, 3.84-7.68 mmole) were dissolved in a few mL chloroform and loaded on a column of silica gel at the ratio 10-15 mg per g of chromatographic material. Elution was made with a gradient of methanol in chloroform (0-20 %), separation being monitored in SS II. The first compound eluted was 1,2,3,4-di-O-trityl-α-D-galactopyranoside. The respective fractions were mixed and evaporated to dryness; oily aspect, [α]D-21 -45 (c=2.5, water).

1H-NMR (CDCl3; δ, ppm; J, Hz): 5.359 (d, 6.5, H-1α of D-Galp), 4.327 (dd, 2.4, H-2), 4.603 (dd, 2.0, H-3), 4.269 (d, 6.8, H-4), 3.618 (m, 6.8, H-5), 3.866 (m, 11.2, H-6a), 3.724 (m, 10.4, H-6b); 1.536, 1.490, 1.340, methyl groups. 13C-NMR (CDCl3; δ, ppm; J, Hz): 100.090 (C-1α), 70.520 (C-2), 70.690 (C-3), 71.666 (C-4), 86.143 (C-5), 62.131 (C-6); 25.951, 25.864, 24.872, 24.258, methyl groups.

The degree of isopropylidenation was relative high, 80-90 %. In a typical experiment, 18.85 g (72.5 mmole; 87 %) of mono- and di-isopropylidene-galactosides have been obtained from 15 g D-galactose. From this, about 40 % were di-isopropylidene galactosides in the ratio furanosic:pyranosic, 6:5. Consequently, 3.84-1 g (14.6-15.7 mmole; 17.5-19.4 %) 1,2,5,6-di-O-isopropylidene α-D-galactofuranoside could be obtained from 15 g D-galactose.

Results and Discussion

The course of isopropylidenation was followed in SS I (fig. 1 and 2). The faster running spots (R, 0.65) represent the mixture of isomeric diisopropylidene galactosides and the slower migrating ones (R, 0.35) represent the mixture of isopropylidenated derivatives. The slowest spot (R, 0.04) represents untransformed sugar (fig. 2). It must be underlined that SS I has a relatively low chromatographic resolution concerning diisopropylidene galactosides; in this solvent, the two isomers migrate as a unique spot. However, SS II, and other SS containing halogenated solvents (dichloromethane), clearly separate the two diastereoisomers (fig. 3). The synthesis of diisopropylidene galactopyranoside is accomplished at room temperature [13] and the synthesis of galactofuranoside isomer at 80-100°C. However, in both hypostases, both isomers are formed, in different ratios. Initially was thought that at room temperature, exclusively diisopropylidene galactopyranoside is formed. In fact, at that time the low amount of diisopropylidene galactofuranoside fell under the sensitivity of analytical methods [14]; the latter compound could subsequently be determined either by mass spectrometry [15] or by TLC (fig. 3), especially in

![Fig. 1. TLC of the mixture of synthesis of 1,2,5,6-di-O-isopropylidene α-D-galactofuranoside after 5 h of refluxing. Both starts, total mixture of synthesis. Migration, SS I (toluene-ethylacetate, 3/1, v/v). Visualisation with moistnin](http://example.com/fig1.png)

![Fig. 2. TLC of the mixture of synthesis of 1,2,5,6-di-O-isopropylidene α-D-galactofuranoside after 5 h of refluxing (start 2), in comparison with D-galactose (start 1) and 1,2,5,6-di-O-isopropylidene α-D-gulofuranoside (start 3). Migration, SS I (toluene-ethylacetate, 3/1, v/v). Visualisation with moistnin](http://example.com/fig2.png)
chloroformic solution obtained by extraction of the watery syrup from synthesis. The mixture of two isomers appears as an oily material. Diisopropylidene furanosic derivative, as soon as is separated, crystalizes in an extremely spectacular manner when concentrated.

There is a good agreement between our results and the results of others [16] concerning $^1$H and $^{13}$C NMR spectra. At the same time, it has to be mentioned that this method unequivocally allows to distinguish between the two isomers, 1,2-5,6-di-O-isopropylidene $\alpha$-D-galactofuranoside and 1,2-3,4-di-O-isopropylidene $\alpha$-D-galactopyranoside, as is evident from the above mentioned data.

Di-isopropylidene galactofuranoside served as precursor in the synthesis of 3'-O-sulfo ester of 8-methoxy-carbonyl oct-1-yl-$\beta$-D-galactopyranosyl-(1-4)-2-acetamido-2-deoxy-$\beta$-D-glucopyranoside [17]. A synthesis of ceramides started with di-isopropylidene glucofuranoside; isopropylidene fragment from C-5-C-6 was removed and C-6 was cleaved by a Malaprade reaction. Functional aldehyde on C-5 was ready to be submitted to a Wittig reaction in order to introduce the trans double bond [18]. Di-isopropylidene glucofuranoside was also used to obtain 3-O-methyl-glucopyranoside and other structural motifs of the saponin Holotoxin A [19].

**Conclusions**

Heating of D-galactose with acetone in dimethylformamide, either in the presence of anhydrous copper sulfate or of p-toluene-sulfonic acid, produces a mixture of 1,2-5,6-di-O-isopropylidene $\alpha$-D-galactofuranoside and 1,2-3,4-di-O-isopropylidene $\alpha$-D-galactopyranoside.

The two isomers can be separated by tritylation of diisopropylidene galactopyranoside derivative. $^1$H and $^{13}$C NMR spectra constitute an adequate instrument to distinguish between the two isomers.

**Acknowledgements:** Thanks are due to Dr. Andreas Tauss from Graz University, Austria, for the samples of 1,2-5,6-di-O-isopropylidene $\alpha$-D-galactofuranoside and 1,2-5,6-di-O-isopropylidene $\alpha$-D-gulofuranoside.

**References**

10. LEDERKREMER, R. M DE, COLLI, W., Glycobiology, **5**, 1995, p. 547
18. KOIKE, K., NAKAHARA, Y., OGAWA, T., Glycoconjugate J., **1984**, **1**, p. 107

Manuscript received: 20.02.2007