Superposition of Potential Chemical Pollutants and Radioisotopes and Their Influence Upon the Environment and Living Organisms

VALERIU V. JINESCU*, SIMONA EUGENIA MANEA, GEORGE JINESCU, VALI IFIGENIA NICOLO\textdagger

1Politehnica University Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
2Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Str., 023468, Magurele, Romania
3Bucharest Emergency Hospital, 8 Calea Floreasca, 014461, Bucharest, Romania
4Technical College Carol I, 52 Porumbacu Str., 060366, Bucharest, Romania

Following the activities developed in a nuclear facility result gaseous and liquid radioactive effluents and radioactive solid waste. All these waste contain radioactive isotopes which are potentially pollutants for the environment. In the same time chemicals are, also, pollutants. According to the legislation, discharging of chemicals and radioactive liquid and gaseous effluents into the environment, should meet the requirements of the unrestricted discharge. However, what happens when several pollutants superpose: only chemical pollutants, or only radioactive pollutants, or chemical and radioactive pollutants? Such problems have been solved in this paper on the basis of the principle of critical energy.

Keywords: chemical pollutants; radioisotopes; superposition; environment, living organisms; principle of critical energy

The liquid effluents release into the environment must be preceded by qualitative and quantitative analysis in order to determine the contaminant radioisotopes and chemicals.

The effective values of radionuclide radioactive concentrations must be lower than its critical value. This depends on the place of discharge. If several radioisotopes, simultaneously or successively, are discharged into the environment, how is it determined whether the critical state has been reached?

However, if one or more polluting chemicals and radioactive are being simultaneously discharged, how is it determined whether or not the situation is critical?

The current legislation states annual derived emission limits for each radioisotope (table 1) \cite{1-4} that may be present in the environment or in living organisms.

The radioactive concentration of each radioisotope expressed in Bq/m3 is taken into account in the decision-making process on further discharges into the environment of a certain radioisotope. For the discharge decision the effective radioactive concentration is compared with the maximum allowable concentration (table 1). However, if there are several radioisotopes, how is it assessed whether or not the limit state has been reached?

On other side the polluting chemical agents may deteriorate the environment, as well as living bodies. The maximum allowable (critical) concentrations for environmental factors (air, water, soil) are described in Table 2 \cite{5-7}. Table 3 contains several limitations of chemicals concentrations for living bodies.

The effective concentration of a certain chemical pollutant must not exceed the maximum allowable concentration listed in table 2. Also in this case, is the problem of evaluation of the actual state of the polluted environment, simultaneous or successive, with more chemical pollutants. How can we state the maximum allowable of state in such cases of multiple chemical pollution?

In case of living bodies, pollution by one chemical agent is permitted if the concentration thereof is lower than a maximum allowable concentration listed in table 3. Another important problem is the simultaneous or successive pollution with several radioisotopes and many chemical pollutants.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Radioisotope & Radioactive concentration limits at the time of discharge [Bq/m3] & Activity limits [Bq/month] \\
\hline
Am-241 & 3.10E+04 & 9.35E+05 & 1.34E+05 \\
\hline
Cs-60 & 3.10E+04 & 2.27E+06 & 3.24E+05 \\
\hline
Ir-192 & 9.83E+04 & 2.93E+06 & 4.21E+05 \\
\hline
Cs-137 & 2.98E+03 & 8.98E+04 & 1.28E+04 \\
\hline
\end{tabular}
\caption{MAXIMUM ALLOWABLE EMISSION LIMITS \cite{1}}
\end{table}

* email: vvjinescu@yahoo.com; Phone: (+40)21.4029193
agents. How do we determine, in this case, whether the limit state has been reached either for the environment or for the living bodies?

All these questions can be resolved, as will be shown below, using the principle of critical energy, a principle of Energonics.

Table 2
MAXIMUM ALLOWABLE CONCENTRATION OF SEVERAL CHEMICAL POLLUTANTS [5-7]

<table>
<thead>
<tr>
<th>Physical or chemical pollutant</th>
<th>U.M.</th>
<th>Maximum Allowable Concentration (MCA)</th>
<th>The limit value for protection of ecosystems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>µg/m³</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>Nitrogen dioxide and oxides of nitrogen</td>
<td>µg/m³</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>Suspensions (PM₁₀)</td>
<td>µg/m³</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Benzenes</td>
<td>µg/m³</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

b – in water [6]

<table>
<thead>
<tr>
<th>Global indicators</th>
<th>U.M.</th>
<th>Waste water discharges in sewer networks</th>
<th>Waste water discharges into natural receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutants discharged</td>
<td></td>
<td>Maximum Allowable Concentration (MCA)</td>
<td></td>
</tr>
<tr>
<td>Suspensions</td>
<td>mg/dm³</td>
<td>350</td>
<td>35.0</td>
</tr>
<tr>
<td>Biochemical oxygen demand in 5 days (BOD₅)</td>
<td>mg</td>
<td>300</td>
<td>25.0</td>
</tr>
<tr>
<td>Ammonia nitrogen (NH₄⁺)</td>
<td>mg/dm³</td>
<td>30</td>
<td>2.0</td>
</tr>
<tr>
<td>Sulphur and hydrogen sulphide(S₂)</td>
<td>mg/dm³</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

c – in soil [7]

<table>
<thead>
<tr>
<th>Physical or chemical pollutant</th>
<th>U.M.</th>
<th>Normal Values</th>
<th>Maximum Allowable Concentration (MCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Motels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>mg/kg</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>mg/kg</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>mg/kg</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>mg/kg</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>

B. Elements

| Cyanide (free) | mg/kg | <1 | 5 |
| Cyanide (complex) | mg/kg | <5 | 100 |

C. Aromatic and polyaromatic hydrocarbons, petroleum hydrocarbons

<p>| Total aromatic hydrocarbons (AH) | mg/kg | <5 | 25 |</p>
<table>
<thead>
<tr>
<th>Chemical agent pollutant</th>
<th>UM</th>
<th>The period of mediation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 h</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>µg/m³</td>
<td>330</td>
</tr>
<tr>
<td>Nitrogen dioxide and oxides of nitrogen</td>
<td>µg/m³</td>
<td>140</td>
</tr>
<tr>
<td>Suspensions (PM₁₀)</td>
<td>µg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Benzene</td>
<td>µg/m³</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3

MAXIMUM ALLOWABLE CONCENTRATION FOR LIVING BODIES OF SEVERAL CHEMICAL POLLUTANTS [5;8]

<table>
<thead>
<tr>
<th>Chemical agent pollutant</th>
<th>UM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamide</td>
<td>µg/dm³</td>
</tr>
<tr>
<td>Arsenic</td>
<td>µg/dm³</td>
</tr>
<tr>
<td>Benz(a)pyrene</td>
<td>µg/dm³</td>
</tr>
<tr>
<td>Benzene</td>
<td>µg/dm³</td>
</tr>
<tr>
<td>Boron</td>
<td>mg/dm³</td>
</tr>
</tbody>
</table>

Calculation of radioisotope activity

To calculate the decay rate, we denote the decay rate. It is measured as the number of disintegrations per unit time,

\[
A = -\frac{dN}{dt} \quad (1)
\]

The decay rate is proportional to the number of radioactive atoms, \(N \), \(A \sim N \).

For periods of time (months), without discharge, the activity calculation is performed only using the radioactive decay law. The general equation for simple radioactive decay,

\[
N = N_0 \cdot e^{-\lambda t} \quad (2)
\]

where \(\lambda \) is the constant of radioactive decay,

\[
\lambda = \ln(2) \cdot \frac{1}{T_{1/2}} = 0.693 \cdot \frac{1}{T_{1/2}} \quad (3)
\]

where \(t \) - the time (expressed in months in the specific case) and \(T_{1/2} \) - the half-life of the radioisotope considered, also expressed in months.

The linearity of the decay curve in the semi-logarithmic graphical illustration shows the exponential nature of radioactive decay. Since \(A \sim N \), we can use the equation of decay (E. Rutherford and F. Soddy, 1903):

\[
A = A_0 \cdot \exp(-\lambda t) \quad (4)
\]

where \(A_0 \) is the activity of the radioisotope at the initial moment.

At the time (\(n \)) of one discharge, \(A_n \), it was used the relation [8],

\[
A_n = A_{n-1} \cdot e^{-\lambda t} + A_{\text{discharge}} \quad (5)
\]

where \(A_{n-1} \) is the activity of the radioisotope (existing in the environment) coming from previous discharges [Bq]; \(A_{\text{discharge}} = C_{\text{rad}} \times V \) (where \(V \) is the volume discharged, expressed in [l] and \(C_{\text{rad}} \) is radioactive concentration expressed in [Bq/l]).

Graphical illustration of activity variation after each discharge (at \(t_0 = 0 \); \(t_1 \); \(t_2 \)) corresponds to the curves \(C_1 \);
Fig. 1.

At the time t_3, the activities corresponding to the three discharges for the same radioactive isotope becomes:

$$A_i(t_3) = A_0 \cdot \exp(-\lambda \cdot t_3) - \text{for curve } C_1;$$

$$A_i(t_3) = A_0 \cdot \exp(-\lambda \cdot (t_3 - t_5)) - \text{for curve } C_2;$$

$$A_i(t_3) = A_0 \cdot \exp(-\lambda \cdot (t_3 - t_6)) - \text{for curve } C_3.$$ \hspace{1cm} (6)

The total activity at a time t, for multiple discharges of the same radionuclide, results from summarizing the remaining activities from all discharges. By generalization, based on the preceding, it results that the total activity at one moment, t,

$$A_i(t) = \sum_{i=1}^{C_r} A_i(t) = \sum_{i=1}^{C_r} A_0 \cdot \exp(-\lambda_i \cdot t)$$ \hspace{1cm} (7)

or

$$A_i(t) = A_0 \cdot \sum_{i=1}^{C_r} \exp[-\lambda_i \cdot (t_n - t)].$$ \hspace{1cm} (8)

The influence of half-life time on the cumulation of activity for each radioactive isotope results from the relation (4) in which λ expression is replaced,

$$A_i = A_0 \cdot \exp[-0.693 \left(\frac{t}{\tau_{1/2}} \right)].$$ \hspace{1cm} (9)

For a relatively long half-life time, for the t same value, the exponential is relatively small.

Derived math A_i in relation to time has the expression,

$$\frac{dA_i}{dt} = \left(-\frac{0.693}{\tau_{1/2}} \right) \cdot A_i.$$ \hspace{1cm} (10)

which shows that time variation of activity A_i (decreasing in time), for the same time value, is smaller than the half-life time (table 4) is higher.

Table 4

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>$\tau_{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Am-241</td>
<td>(412.6 ± 0.6) years [9]</td>
</tr>
<tr>
<td>2. Co-60</td>
<td>(527.11 ± 0.0008) years [10]</td>
</tr>
<tr>
<td>3. Ir-192</td>
<td>(73.827 ± 0.013) days [11]</td>
</tr>
<tr>
<td>4. Cs-137</td>
<td>(30.5 ± 0.08) years [10]</td>
</tr>
<tr>
<td>5. H-3</td>
<td>(12.312 ± 0.025) years [10]</td>
</tr>
</tbody>
</table>

In case of local overlap, in time, of the radioactivity of all four radioisotopes listed in table 1, over a period of time, is obtained - by algebraic summation - the time variation of total activity. Total activity value, A_t, at the moment t, can be calculated by summing it with relation (7).

Local variation of the activity of a certain radioactive effluent (1), between the initial moment ($t = 0$) and the moment t_1 is (fig. 2),

$$A_1(t_1) = A_0^{(1)} \cdot [1 - e^{0.693 \cdot t_1}].$$ \hspace{1cm} (11)

where $\lambda_1 = \frac{0.693}{(\tau_{1/2})_{(1)}}$.

For another (2) radioactive effluent,

$$A_2(t_1) = A_0^{(2)} \cdot [1 - e^{0.693 \cdot 2t_1}].$$ \hspace{1cm} (12)

Indicates (1) and (2) refer to the values corresponding to the two effluents.

At the simultaneous action of the two effluents over time $0...t_1$, total activity at the time t_1 is:

$$A_t = (A_1(t_1) - A_1(t_0)) + (A_2(t_1) - A_2(t_0)) =$$

$$= A_0^{(1)} \exp \left(\frac{0.693 \cdot t_1}{(\tau_{1/2})_{(1)}} \right) + A_0^{(2)} \exp \left(\frac{0.693 \cdot t_1}{(\tau_{1/2})_{(2)}} \right).$$ \hspace{1cm} (13)

wherefore it follows that at $t=0, t = 0, A_t = A_0^{(1)} + A_0^{(2)}$ and $t_1 \to \infty, A_t = 0$.

Influence of uniform corrosion on material deterioration

The corrosive action, in the case of uniform corrosion, is determined on the basis of the relation expressing the correlation between the thickness of corroded material, Δs_{cr}, and the corrosion time, for each pair material - corrosive agent [12].

$$\Delta s_{cr} = k_c \cdot t^c$$ \hspace{1cm} (14)

where k_c and c are constants of the corrosion process.

Corrosion deterioration of a material having initial thickness s, has the expression [13],

$$D_t = \left(\frac{t}{t_{c,cr}} \right)^c,$$ \hspace{1cm} (15)

where t is the contact time between the corrosive environment and the corroded body, and $t_{c,cr}$ - time up to full corrosion, of the entire thickness s.

Evaluation the critical state of the environment and living organisms by calculation

The critical state for a certain body is reached when specific energy (energy density), accumulated due to...
external actions, achieve a critical value, depending on the particularities of that body.

Such problems have been resolved in other cases, corresponding either to load's cumulation \([14,15]\), or some load superposition \([16-21]\), upon a certain body (solid body, environmental, living organism...).

- Solving of superposition and/or cumulations problems of some loads effects. In the general case of non-linear behaviour of matter, is done using the principle of critical energy \([22-24]\).

According to this principle, the critical state is reached when the total participation of the specific energies involved \(P_r(t)\), becomes equal to critical participation, \(P_{cr}(t)\), both are time-depending, \(t\):

\[
P_r(t) = P_{cr}(t)
\]

Total participation corresponding some loads, \(S_j\), has the expression \([25]\),

\[
P_r(t) = \sum \left(\frac{S_j}{S_j^{cr}} \right)^{\alpha_j}
\]

where \(S_j^{cr}\) is critical value for \(S_j\), for that type of load, and \(\alpha_j = 1/k_j\), where \(k_j\) is the exponent on the law of behaviour of the material body loaded,

\[
S_j = M_j \cdot e^{k_j},
\]

where \(e\) is the load effect, \(M_j\) and \(k_j\) - material constants.

The critical participation has the following expressions \([15;26]\):

\[
P_{cr}(t) = \begin{cases}
P_r(0) - D_r(t) - P_{re} & \text{for inert bodies (lifeless bodies);}
\end{cases}
\]

\[
P_{cr}(t) = \begin{cases}
P_r(0) - D_r(t) - W_r + P_p(t) & \text{for living matter,}
\end{cases}
\]

where \(P_r(0)\) is the initial value of critical participation, at \(t = 0\), and expresses the statistical distribution of physical characteristics values.

Generally, \(P_r(0) \in [P_{r,\min}(0); P_{r,\max}(0)]\) with \(P_{r,\max}(0) > 0\) and \(P_{r,\min}(0) \leq 1\). If the physical characteristics are deterministic values, then \(P_{r,\min}(0) = 1\).

\(D_r(t)\) is the total damage (or deterioration), a dimensionless value,

\[
D_r(t) = \sum D_i(t)
\]

where \(D_i(t)\) is the deterioration of matter due to cause \(i\); for example, due to corrosion, erosion, creep, vibration, hydrogen action, neutron action, magnetic field, radiation action, chemical pollutants etc.

By manufacturing, in the engineering components there are induced residual stresses, \(\sigma_{res}\), to which corresponds the participation,

\[
P_{r,\sigma}(t) = \left(\frac{\sigma_{res}}{\sigma_{uf}} \right)^{\alpha_{\sigma}} \cdot \delta_{\sigma,1}
\]

where \(\sigma_{uf}\) is the ultimate stress and \(\delta_{\sigma,1} = 1\) if the residual stresses act in the direction of the process taking place and \(\delta_{\sigma,1} = -1\) if not.

For the living bodies the participation corresponding to the weakness due to lack of vitamins, oligoelements etc. is introduced; it is dimensionless. The total participation to the weakness is,

\[
W_{\alpha} = \sum W_{\alpha,j}
\]

where \(W_{\alpha,j}\) is the participation to the weakness due to cause \(i\).

\(P_r(t)\) is the participation of specific energies through the treatments, medicines etc.; it is a subunit dimensionless size, which can be: positive if it helps to increase the body’s resistance, null if it has no effect and negative if it decreases body resistance, in the given case of load.

The total participation of the specific energies \(P_r(t)\) - dimensionless value - express the load level of material body at a given time. The critical participation \(P_{cr}(t)\) - dimensionless value - express the resistance of the material body at a given time.

Therefore, if,

\[
P_r(t) < P_{cr}(t) \quad \text{the loading is subcritical;}
\]

\[
P_r(t) > P_{cr}(t) \quad \text{the loading is critical or overcritical.}
\]

Deterioration of the environment or of a living organism, by action:

- a pollutant, the concentration \(c_{p}\), whose the maximum permissible concentration in the environment \(c_{p,\max}\) is calculated with the relation,

\[
D_{p}(c_{p}) = \left[\left(\frac{c_{p}(t)}{c_{p,\max}} \right)^{\alpha_{p}} \right]^{\delta_{p,1}}
\]

where \(\alpha_{p} = 1/k_{p}\), \(k_{p}\) - derives from the general law of non-linear behaviour of the body upon load with a pollutant,

\[
c_{p}(t) = M_{cp} \cdot e_{p}^{k_{p}}(t)
\]

where \(e_{p}\) is the effect of the pollutant on the environment, living organisms, plants etc.; \(M_{cp}\) and \(k_{p}\) - are constants relating with the pollutant.

- more pollutants; the total deterioration due to pollutants is,

\[
D_{p,-}(c_{p}) = \sum \left(\frac{c_{p}(t)}{c_{p,\max}} \right)^{\alpha_{p,-1}}
\]

- radioactive by radioisotope with activity \(A_k(t)\), the deterioration can be calculated with the relation,

\[
D_{k}(A_k) = \left[\left(\frac{A_k(t)}{A_{k,\max}} \right)^{\alpha_{k}} \right]^{\delta_{k,1}}
\]

where \(\alpha_{k} = 1/k_{k}\), \(k_{k}\) - is the exponent of the law, function of power, expressing the connection between the cause \(A_k\) and its effect, \(e_{k}\), on the analysed material body (inert body, air, water, soil, a living organism etc...),

\[
A_k(t) = M_{A_k} \cdot e_{k}^{k_{A_k}}
\]

where \(M_{A_k}\) and \(k_{A_k}\) are the constant of the irradiated material body;

- radioactive by several radioisotopes; total deterioration is,

\[
D_{k,-}(A_k) = \sum \left(\frac{A_k(t)}{A_{k,\max}} \right)^{\alpha_{k,-1}}
\]

It should be noted that in previous relationships either exponents \(\alpha = 1/k\) corresponds to a quasistatic load. If the load has a shock character, then any of these exponents is null, \(\alpha = 0\).
Where, in analysing the resistance of the body are using deterministic values of physical characteristics \(P_{cr}(0) = 1\) the relations (19) becomes

\[
P_{cr}(t) = \begin{cases}
1 - D_{cr}(t) - P_{cr}, & \text{for inert bodies (lifeless bodies)}; \\
1 - D_{cr}(t) - W_{cr} + P_{cr}(t), & \text{for living matter}.
\end{cases}
\]

The higher the deterioration to the body (inert body, living matter, environment ...) its resistance to external loads becomes lower. If at certain given moment \(t_1\) the deterioration \(D_{cr}(t_1) > D_{cr}(t)\) the body resistance is characterized by critical participation of inert matter (fig. 3).

\[
\text{sum of their partial effects } X = X_1 + X_2, \text{ only if } X_1 \text{ and } X_2 \text{ have the same unit of measure, and the behaviour of the body loaded is linear } (Y = M_{cr}. X, \text{ where } M_{cr} \text{ is constant of the material}).
\]

Generally, the behaviour of matter is non-linear (relations (12)-(16), (23), (26)) that means the total effect is different from the sum of partial effects [27], \(X \neq X_1 + X_2\).

This observation led to clarifying the problem of the synergistic effect in case of superposition or cumulation loads. Usually, by synergistic effect it is understood that the total effect is greater than the sum of the particular effects \(X > X_1 + X_2\). It has been demonstrated [27] that the total effect depends not only on particular effects, but also by the exponent of the material behaviour law, when it is non-linear \((Y = M_{cr}. X^k, \text{ where } M_{cr} \text{ and } k \neq 1 \text{ are the constant of the loaded material}). In case of radioisotopes and corrosive substances the exponents in the behaviour law (12) and (23) may be different from 1.0; in these situations \(X \neq X_1 + X_2\).

If these exponents are supra unitary \((k > 1)\), negative synergistic effects are obtained \((X < X_1 + X_2)\), while the exponents are subunits \((k < 1)\) synergistic positive effects are obtained \((X > X_1 + X_2)\). These results in the importance of knowing exactly the law of behaviour of the matter loaded.

The evaluation of the synergistic effect was done at the macroscopic level [27], as well as at the molecular level [28]. Molecular evaluation is particularly important in analysing the influence of any load on living organisms.

Example of calculation

Consider polluted water at \(t = 0\) with two chemical substances (Nitrogen and Sulphides and Hydrogen sulphide \(S^2\)) and with three radioisotopes \((^{241}\text{Am}, ^{60}\text{Co}, ^{192}\text{Ir})\), as in tables 5 and 6.

It has to be calculated: - the partial deteriorations and the total deterioration produced at the moment \(t = 0\) for the aquatic environment and the value of these deterioration; a. The total deterioration produced at the moment \(t = 0\). The deterioration produced by the chemical substances at the moment of discharge \((t = 0)\) according to eq. (24), with \(a_{\text{p}} = 0\), is

<table>
<thead>
<tr>
<th>Chemical agent pollutant</th>
<th>U.M.</th>
<th>Maximum allowable concentration ([\text{m}g/\text{dm}^2])</th>
<th>Concentration value of pollutant at discharge time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen ((\text{N}_2))</td>
<td>mg/\text{dm}^2</td>
<td>10</td>
<td>1.68</td>
</tr>
<tr>
<td>Sulphides and hydrogen sulphide ((S^2))</td>
<td>mg/\text{dm}^2</td>
<td>0.5</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Table 5

MAXIMUM ALLOWABLE CONCENTRATIONS AND CONCENTRATIONS OF CHEMICALS DISCHARGED

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>Maximum allowable radioactive concentration ([\text{Bq/m}^3])</th>
<th>Concentration value of radioisotopes at discharge time ([\text{Bq/m}^3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{241}\text{Am})</td>
<td>(3.10E+04)</td>
<td>(4.07E+03)</td>
</tr>
<tr>
<td>(^{60}\text{Co})</td>
<td>(3.10E+04)</td>
<td>(1.47E+04)</td>
</tr>
<tr>
<td>(^{192}\text{Ir})</td>
<td>(9.83E+04)</td>
<td>(1.43E+04)</td>
</tr>
</tbody>
</table>

Table 6

MAXIMUM ALLOWABLE CONCENTRATIONS AND CONCENTRATIONS OF RADIOISOTOPES DISCHARGED
References

3. *** Ordinul Ministerului nr. 197/19.11.2010 privind aprobarea Regulamentului de Organizare si Functionarea a Retelei Nationale de Supraveghere a Radioactivitatii Mediului.

5. *** Legea 104/15.06.2011 privind calitatea apei potabile, published in the Official Gazette of Romania nr. 582/ 30.06.2004

7. *** Ordinul Ministerului Apei, Padurilor si Protecției Mediului, nr 756/03.11.1997 pentru aprobarea Reglementarii privind evaluarea poluarii mediului, published in the Official Gazette of Romania, Parte I no. 313 bis /06.XI.1997.

20. JINESCU VV, IORDACHESCU VI., TEODORESCU N., Relation for Calculation of Critical Stresses in Pressure Equipment with Cracks, Rev. Chim. (Bucharest), 64, no. 8, 2013, p. 858

22. JINESCU VV, Principiul energiei critice, Rev. Chim. (Bucharest), 35, no. 9, 1984, p. 858

26. JINESCU VV, TEODORESCU N., JINESCU G., PANAIT I.C., The results of superposition of different actions upon the mechanical structures and living bodies, Rev. Chim. (Bucharest), 67, no. 12, 2016, p. 2607.

27. JINESCU VV, MANEA S. E., JINESCU C., The result of loads superposition upon the matter and particularly upon the environment, Rev. Chim. (Bucharest), 68, no. 4, 2017, p. 556