The Impact of Laparoscopic Sleeve Gastrectomy on Serum Zinc or Copper and Body Composition

DANIEL TIMOFTE1, LACRAMIOARA OCHIUZ2*, MANUELA URSARU1, BOGDAN CIUNTU1, LIDIA IONESCU1, VALENTIN CALU4, VERONICA MOCANU5, ION COSMIN PUJA6,7

1 Grigore T. Popa University of Medicine and Pharmacy, Department of General Surgery, 16 Universitatii Str., 700115, Iasi, Romania
2 Grigore T. Popa University of Medicine and Pharmacy, Department of Pharmaceutical and Biotechnological Drug Industry, 16 Universitatii Str., 700115, Iasi, Romania
3 Grigore T. Popa University of Medicine and Pharmacy, Department of Radiology, 16 Universitatii Str., 700115, Iasi, Romania
4 Carol Davila University of Medicine and Pharmacy, Department of General Surgery, Elias Emergency University Hospital, 37 Dionisie Lupu Str., 030167 Bucharest, Romania
5 Grigore T. Popa University of Medicine and Pharmacy, Department of Pathophysiology, 16 Universitatii Str., 700115, Iasi, Romania
6 Iuliu Hateganu University of Medicine and Pharmacy, B Victor Babes Str., 400000 Cluj Napoca, Romania
7 Octavian Fodor Regional Institute of Gastroenterology and Hepatology of Cluj Napoca, 19 Crotorilor Str., 400000, Cluj Napoca, Romania

The aim of this study was to investigate the impact of bariatric surgery on body composition, serum zinc and serum copper levels in obese patients over a period of 12 months following laparoscopic sleeve gastrectomy. This could be important considering that this procedure has been proven to be an effective tool in achieving absolute weight loss and reducing fat tissue in morbidly obese population. Thus, our present results are confirming some important modifications behind the biochemistry of the bariatric surgery and the aforementioned impact of laparoscopic sleeve gastrectomy on serum zinc or copper and body composition.

Keywords: zinc, copper, serum, bariatric, gastrectomy

Bariatric surgery is widely accepted as the most effective strategy leading to long-term weight loss. The results of this operation are impressive: studies have shown a decrease in mortality, in cardiovascular events and cancer incidence [1, 2]. Furthermore, it has been observed a major improvement in metabolic obesity-related comorbidities [3–5], as our group and others also previously described on various levels, related areas of research and experimental designs and [6–15].

However, how much fat mass (FM) or muscle mass (MM) is lost, is still uncertain. In the ideal case, there would be an expectation of significant loss of body fat and a desired limited loss of muscle tissue. In the event that an excessive loss of lean body mass (LBM) occurs, certain metabolic consequences are expected, due to LBM being a key determinant of weight loss and also to glycemic regulation. Furthermore, a significant loss of muscle mass (MM) in particular, may lead to a poorer quality of life, with an occurrence of functional impairment due to an accelerated onset of fatigue in daily activities. In addition, muscle tissue is a major determinant of insulin sensitivity, and also involved in post-prandial glucose disposal. Other studies have shown that the percentage of lean body mass lost after bariatric surgery is expected to be approximately 31% of the total mass lost [16-21].

It is well documented that obese individuals experience chronic inflammation resembling that found in various infectious disease [22, 23]. It seems likely that zinc and copper metabolism are altered similarly by cytokines [24] and signaling pathways [22, 25] in infection and obesity. However, it is not certain that the quality and the quantity of inflammation are identical in both of these conditions. The response to acute and chronic inflammation is described as a number of plasma proteins, such as ceruloplasmin, being synthesized in liver under the influence of cytokines and secreted into the circulation [13]. Furthermore, a few other proteins, such as albumin, present a simultaneous decrease. Some of the albumin decline presented in the literature may have resulted from inflammation. It is well known that albumin is the principal copper-binding protein [26] in serum. Therefore, with lower copper values because ceruloplasmin is the predominant carrier of circulating copper [27]. Perhaps copper deficiency would have been found if patients had been evaluated with some of the newer, potentially more sensitive, indices of copper status such as erythrocyte and extracellular superoxide dismutases, leukocyte copper, platelet cytochrome c oxidase or serum lysyl oxidase [28-32].

Although the Western diet, for example, is often low in copper [33, 34], copper deficiency has not been described in patients before bariatric surgery. However, a copper deficiency is often reported after bariatric surgeries [35-37]. Studies in the literature show that patients who undergo laparoscopic sleeve gastrectomy show a 65% to 80% loss in body weight over a 12- to 18-month postoperative follow up [38, 39], but there are relatively few studies that present how much of this is muscle mass or fat mass. These changes are the result of a calorie deficit, low protein intake, and quick weight loss, with patients who undergo bariatric...
surgery likely to see changes in body composition over the course of treatment. The aim of this study was to investigate the impact this procedure has on body composition, serum zinc and serum copper levels in obese patients over a period of 12 months following laparoscopic sleeve gastrectomy.

Experimental part
Participants
90 patients (44 men and 46 women), all Romanians, who were hospitalized for laparoscopic sleeve gastrectomy surgery in the Surgery Service, Sf. Spiridon Clinical Emergency Hospital in Iasi (Romania) were recruited to be part of the experimental group. These patients were investigated before and 12 months after the laparoscopic sleeve gastrectomy. Data from the experimental group was compared to that of a control group, recruited from the waiting list for laparoscopic sleeve gastrectomy, consisting of 89 patients, 33 males and 56 females. The control group was recruited to match weight, lean body mass, fat mass, muscle mass, serum zinc and serum copper in relation to the corresponding baseline values in the group who underwent laparoscopic sleeve gastrectomy, as it can be seen in table 1.

All patients signed a specific study inclusion agreement annexed to the informed consent form [40], and all experimental biochemical studies were performed in the light of the uniformly accepted ethical principles stated by the Helsinki Declaration [41-47].

Body composition analysis
Weight was measured with a digital scale to the nearest 0.1 kg, and height was determined by a wall-mounted stadiometer to the nearest 0.5 cm. Body composition was measured by DEXA, using a whole-body scanner. For all patients, right-side half-body scans were carried out from which whole-body composition was extrapolated [48, 49]. MM corresponded to the appendicular LBM (the MM of the arms and legs), and was determined as the difference between total LBM and truncal LBM after removing the contribution of bone.

Serum trace element analysis
Copper and zinc concentrations in serum were measured by flame atomic absorption spectrometry following a one in four dilution with water. Typical between-batch precision for these assays was 3.9 and 2.27%, respectively.

Statistics
All analyses were defined a priori. The results were given as arithmetic mean with SD. ANOVA was used for group comparisons. Adjusted analyses were made using ANCOVA. Baseline associations between continuous variables were analyzed using Pearson correlation coefficients [50-52]. Tests were two-tailed and a p value <0.05 was considered significant. The statistical analysis was performed using Windows 19.0 version of SPSS software (SPSS Inc., Chicago, IL, USA).

Results and discussion
Baseline Data
At baseline, before patients underwent laparoscopic sleeve gastrectomy surgery, there were no statistically significant differences between the group of patients directed for surgical treatment and the control group, regarding age, height, weight, LBM, FM, MM, serum copper or serum zinc concentrations (table 1). None of the patients in this study had any complications during the surgical performance or during the 1-year follow-up period.

Data at 12-months follow-up
Serum zinc concentration decreased in the experimental group, from 77.3 to 63 µg/dL (p < 0.001). The same exact trend was observed during the corresponding period in the control group, from 77.1 to 76.6 µg/dL (p = 0.008). The intergroup difference in serum zinc concentrations at the 12-months follow-up (p < 0.001) was significant (fig. 1). Serum copper concentrations decreased from 147 µg/dL before laparoscopic sleeve gastrectomy surgery to 90.2 µg/dL at the 1-year follow-up (p < 0.001) and increased from 147.1 to 147.6 µg/dL in the control group (p = 0.021). The intergroup difference regarding serum magnesium at the 12-months follow-up was statistically significant (p < 0.001) (fig. 2).

In the experimental group, the mean LBM decreased

| Table 1 |
| CHARACTERS OF STUDY PARTICIPANTS BEFORE AND 12 MONTHS AFTER LAPAROSCOPIC SLEEVE GASTRECTOMY. DATA PRESENTED AS MEAN (SD) |

<table>
<thead>
<tr>
<th></th>
<th>Before surgery</th>
<th>P</th>
<th>After 12 months</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental group</td>
<td>Control group</td>
<td>Experimental group</td>
<td>Control group</td>
</tr>
<tr>
<td>Age (years)</td>
<td>40.23(6.8)</td>
<td>42 (7.6)</td>
<td>0.088</td>
<td>-</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>44/46</td>
<td>33/56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body composition analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>122.1(13.3)</td>
<td>120.6 (20)</td>
<td>0.605</td>
<td>-</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171 (9.2)</td>
<td>169.6 (7.1)</td>
<td>0.275</td>
<td>-</td>
</tr>
<tr>
<td>Lean body mass (kg)</td>
<td>57.2 (10.9)</td>
<td>57.1 (10.9)</td>
<td>0.965</td>
<td><0.001</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>56.8 (10.9)</td>
<td>56.7 (10.9)</td>
<td>0.961</td>
<td><0.001</td>
</tr>
<tr>
<td>Muscle mass (kg)</td>
<td>25.5 (10.6)</td>
<td>25.4 (10.6)</td>
<td>0.963</td>
<td>0.002</td>
</tr>
<tr>
<td>Biochemical variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum zinc (µg/dl)</td>
<td>77.3 (8.7)</td>
<td>77.1 (12.6)</td>
<td>0.897</td>
<td>63 (11.1)</td>
</tr>
<tr>
<td>Serum copper (µg/dl)</td>
<td>147(11)</td>
<td>147.1 (18.8)</td>
<td>0.966</td>
<td>90.2 (14.7)</td>
</tr>
</tbody>
</table>

In the experimental group, the mean LBM decreased

REV.CHIM.(Bucharest) • 68 • No. 11 • 2017 http://www.revistadechimie.ro 2629
Fig. 1 Changes in serum zinc (µg/dL) from baseline to 1-year follow-up in obese patients treated with laparoscopic sleeve gastrectomy surgery compared to untreated controls.

Fig. 2 Changes in serum copper(µg/dL) from baseline to 1-year follow-up in obese patients treated with laparoscopic sleeve gastrectomy surgery compared to untreated controls.

Fig. 3 Changes in lean body mass (kg) from baseline to 1-year follow-up in obese patients treated with laparoscopic sleeve gastrectomy surgery compared to untreated controls.

Fig. 4 Changes in fat mass (kg) from baseline to 1-year follow-up in obese patients treated with laparoscopic sleeve gastrectomy surgery compared to untreated controls.

Fig. 5 Changes in muscle mass (kg) from baseline to 1-year follow-up in obese patients treated with laparoscopic sleeve gastrectomy surgery compared to untreated controls.

from 57.2 kg at baseline to 47.2 kg, (p < 0.001). In the control group, a small change but non-significant in mean LBM was observed between baseline and 12 months follow-up, LBM 57.1 kg and 57.2 kg, respectively, p = 0.095. LBM was significantly different in the two groups at the 12 months follow-up (p < 0.001) (fig. 3).

Regarding the fat mass, in the experimental group, the mean FM decreased from 56.8 kg at baseline to 30.6 kg after 1 year (p < 0.001). In the control group, a small change but again non-significant in mean FM was observed between baseline and 1 year follow-up, FM 56.7 kg and 56.8 kg, respectively p = 0.067. FM was significantly different in the two groups at the 1 year follow-up (p < 0.001) (fig. 4).

When we analyzed the difference between the baseline and after 1 year data regarding the muscle mass, a decrease was observed in the experimental group, from 25.5 to 20.6 kg (p < 0.001), while the MM in the control group remained approximately the same during the 12-months period, 25.43 and 25.46 kg (p = 0.278). The intergroup difference regarding the MM at the 12-months follow-up (p = 0.002) was significant (fig. 5).
When we controlled the preoperation values, using ANCOVA, the statistical significance difference between control and experimental groups 12 months post operation maintained for all the measured variables (serum zinc, serum copper, LBM, FM and MM) \((p < 0.001). \)

Average LBM taken at baseline was 57.2±10.9 kg, with average ponderal loss of 10.0 kg 12 months after bariatric surgery. These results are in concordance with those found in the literature. For example, in a study by Aquino et al. [53], where 114 patients undergoing bariatric surgery were evaluated and found to have a LBM average of 64.43 kg preoperation to 51.39 kg 6 months post-surgery. The same study found an average drop in FM from 58.41 at baseline to 36.40 after 6 months. Another study on 123 patients, by Hartwig el al. [54], found a drop in LBM from 65.4 kg to 61.0 kg only one month after bariatric surgery. The same study showed a drop in mean FM from 60.1 kg to 50.4 kg. A bariatric surgery is considered to be successful when patients show a ponderal loss over 30% of their preoperative weight. A satisfactory outcome of a bariatric surgery is considered when 25% of their preoperative weight is lost; and unsatisfactory when they lose fewer than 25% of their total weight [55].

Therefore, the patients we studied lost 28.5% of their FM after 12 months after laparoscopic sleeve gastrectomy. Surgery could thus be classified as successful. However, the patients also lost 19.2% of their muscle mass, which may be a reason to raise concerns about future health.

As before mentioned, bariatric surgery’s main benefit lies on reducing comorbidities associated with obesity. It is demonstrated that even a slight drop in weight is enough to have a positive effect on type 2 diabetes, hypertension, and dyslipidemia [56, 57]. Furthermore, a 10% drop in weight leads to better long-term control of these same conditions [58].

The significant decrease in MM (from 25.5 kg to 20.6 kg) observed in the experimental group may be explained by the large caloric deficit that is created after the drastic total body weight lost. Large drops in weight are usually followed by a significant drop in basal metabolic rate (BMR), to the tune of hundreds of kilocalories [59]. If we add the hypocaloric diets often prescribed post-surgery that boost proteolysis to meet metabolic demands, we might explain the drop in MM. Furthermore, when this caloric deficit is not followed by sustained physical exercise, which has many benefits including boosting resting metabolic rate and stimulating protein synthesis in the muscles [60, 61], basal metabolic rate was found to drop by 15% to 30% in some studies, making it impossible to maintain a healthy body composition in the long term [62]. However, there is a consensus that obese individuals, regardless of age, have a greater absolute maximum muscle mass and strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (quadriceps, calf and other muscles), thus increasing muscle size and strength [63]. Therefore, when the overload stimulus is decreased (the body-weight) a drop in muscle mass should be expected.

In addition, protein intake was found to predict the extent of muscle lost after bariatric surgeries. At the end of the first postoperative year, greater protein intake was conducive to the weight lost being primarily in fat. In a study where the authors used stable isotope techniques, on 82 individuals following bariatric surgery, the results showed an 18% drop in lean mass and 82% drop in fat after 4 months [64]. Another study found that 12-months after bariatric surgery, a 20–30% loss in lean mass was found. The amount of fat lost was found to range between 70% and 80% of total weight loss by the patients [65].

The importance of physical activity after bariatric surgery is undeniable, physical exercise can speed up weight loss and preserve LBM. It has been proven that patients who performed physical exercises after bariatric surgery gained 15% LBM, while those who remained sedentary lost 11% LBM by the end of the first year of observation [66]. Therefore, engaging in physical activities is a determining factor in the drop in FM and gains in LBM and MM. Another, study by Herring et al [67], 24 patients who underwent bariatric surgery, recorded a 5.6 kg difference between groups in body mass change from baseline to 24 weeks favoring the exercise group.

In addition, it has been found that body fat percentage and FM are more direct indicators of the gravity of obesity than BMI [68]. Furthermore, it has also been shown that premature death is inversely proportional to gains in FM and reductions in LBM [69, 70]. As before mentioned, a significant drop in LBM results in a drop in basal metabolic rate [71], which is of a higher importance during postoperative care, given how an adequate protein intake and engaging in rigorous physical exercises may moderate, or even outweigh the negative effects of a carbohydrate-restrictive, caloric-deficit diet. That is the reason why regularly physical activities play such an important role in the maintenance or in the improvement of lean muscle mass [72, 73].

However, despite physical activity being an important method for optimizing surgical outcomes after laparoscopic sleeve gastrectomy, it should be taken into consideration that it can sometimes lead to a compensatory response of increased caloric intake [74]. The American Society for Metabolic and Bariatric Surgery has reported that exercise changes body composition, with increased lean body mass resulting in slower loss of overall body mass [74]. The frequency and intensity of exercise may also affect metabolic rate contributing to weight loss plateaus, further studies should assess how different types of exercises, with different frequencies performed at different levels of intensity, influence the total weight lost and the body composition after bariatric surgeries.

In connection to physical activities, there is well known that trace elements like zinc and copper are directly involved as enzymatic co-factors in maintaining and regulating many physiological processes, especially those related to physical exercise [75-77]. In fact, zinc is a structural component of several enzymes, among which are carbonic anhydrase and copper is in the structure of SOD, LDH and cytochrome oxidase. Therefore, it is important to determine whether bariatric surgery alters plasma levels of these metals, as this could be a possible cause of deficit, necessitating a supplementation to maintain enzyme efficiency especially if the patients are regularly engaging in physical activities.

In addition, patients undergoing laparoscopic sleeve gastrectomy are at risk for impaired copper status due to hypo acidity in the remnant stomach pouch and because of bypass of the duodenum. In our study we find a clear trend for change in serum copper levels after bariatric procedures, in the sense of a statistically significant difference between the experimental group and the controls, 90.2µg/dL compared to 147.6µg/dL, respectively \((p < 0.001). \) In concordance with our results, previous studies have shown that the concentration of blood copper decreases following bariatric surgery [78-80]. Furthermore, there are numerous reports of severe cases of copper...
deficiency after these surgeries [79-81]. The prevalence of copper deficiency ranges from 10 to 15% in cross-sectional studies and to 18% in longitudinal studies [79,80,82,83]. Other than bariatric surgeries, other risk factors for copper deficiency include high zinc supplementation, and insufficient copper in micro nutrient supplementation [78]. Regarding the serum zinc level, we found a statistically significant difference between the laparoscopic sleeve gastrectomy group and the control group after 12 months, 76.6 µg/dL compared to 63.0, respectively (p < 0.001). Before the operation, we did not observe significant deficiencies in any of the trace elements that we measured and it is important to mention that our preoperative sample (experimental group plus control group) was significant (n = 179). The mean serum zinc was 77.2 µg/dL and for serum copper 147.0µg/dL. These results at baseline are in contrast to other studies which have demonstrated that obesity is associated with lower circulating concentrations of many micronutrients and greater prevalence of biochemical deficiencies. The mechanisms underlying these observations are likely diverse but, as before mentioned, include effects of inflammation on nutrient transporter proteins as well as greater volumes of distribution given expanded adipose and body water compartments [84]. In addition, obesity and weight gain have been associated with poor food choices, suggesting that despite high caloric intake, micro-nutrient intake in obese patients is deficient [84-86]. In addition to the inadequate nutrient intake in obesity, it has been showed that nutrient metabolism is also altered in the obese population. Some authors suggest that chronic inflammation associated with obesity may dysregulate nutrient homeostasis, alter synthesis of binding proteins, or even increase oxidative stress, therefore, resulting in an increase usage of antioxidant nutrients [87, 88]. Additionally, although our mean values for both zinc serum and copper serum were significantly lower when compared to the matched control group, the values remained in the normal ranges for both minerals (70-150 µg/dL for copper and 60-144 for zinc). However, it still remains a concern and frequent and thorough evaluations are necessary.

Conclusions
Bariatric surgery has been proven to be an effective tool in achieving absolute weight loss and reducing fat tissue, in morbidly obese population. However, a diet rich in micronutrients and with an adequate protein intake should be prescribed to minimize the loss of lean body mass, and to counteract the post operation mineral deficiencies. In addition, physical exercises, aerobic or strength training should be performed regularly to reduce the negative impact that this operation has on muscle mass and muscle strength.

References

41. TOADER, E., TOADER, T., Revista Romana de Bioetica, 10, no. 3, 2012, p. 66.
